elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Advanced exergy analysis of Rankine-based pumped thermal energy storage systems: Methodology and theoretical analysis

Tomasinelli, Sergio und Hofmann, Mathias und Witte, Francesco und Tsatsaronis, George (2026) Advanced exergy analysis of Rankine-based pumped thermal energy storage systems: Methodology and theoretical analysis. Applied Thermal Engineering, 290 (2). Elsevier. doi: 10.1016/j.applthermaleng.2026.129892. ISSN 1359-4311.

[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S1359431126002000

Kurzfassung

Large-scale electricity storage is crucial for balancing renewable energy supply and demand. Pumped thermal energy storage (PTES) systems present a promising solution by converting electrical energy to thermal energy for storage and subsequent reconversion to electricity. This study contributes to the advancement of PTES technology through two primary contributions. Firstly, it presents a novel methodology for advanced exergy analysis that integrates the rigor of the decomposition method with cycle-based simulation approaches. Secondly, it employs this methodology to analyze different PTES configurations, facilitating a comparative analysis of systems with pressurized and atmospheric thermal energy storage across varying temperature levels. The methodology is implemented in a dedicated Python code that solves all real, ideal, and hybrid cases within a unified Newton-Raphson framework. This code is distributed together with the PTES models and input data. The findings indicate that, while heat exchangers exhibit the highest exergy destruction rates, turbomachinery components offer greater potential for optimization. The high-temperature PTES configuration achieves superior round-trip efficiency (up to 43.2%) in comparison to the low-temperature design (below 40%). The results of this study indicate that open-source frameworks can support the conduction of comprehensive exergy analyses, thereby establishing a foundation for future research endeavors aimed at incorporating economic considerations and more complex process designs.

elib-URL des Eintrags:https://elib.dlr.de/222886/
Dokumentart:Zeitschriftenbeitrag
Titel:Advanced exergy analysis of Rankine-based pumped thermal energy storage systems: Methodology and theoretical analysis
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tomasinelli, Sergios.tomasinelli (at) tu-berlin.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hofmann, Mathiashofmann (at) iet.tu-berlin.dehttps://orcid.org/0000-0002-1541-3874NICHT SPEZIFIZIERT
Witte, Francescofrancesco.witte (at) dlr.dehttps://orcid.org/0000-0003-4019-0390NICHT SPEZIFIZIERT
Tsatsaronis, Georgegeorgios.tsatsaronis (at) tu-berlin.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2026
Erschienen in:Applied Thermal Engineering
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:290
DOI:10.1016/j.applthermaleng.2026.129892
Verlag:Elsevier
ISSN:1359-4311
Status:veröffentlicht
Stichwörter:Pumped thermal energy storage Exergy analysis Advanced exergy analysis Python-based analysis
HGF - Forschungsbereich:Energie
HGF - Programm:Energiesystemdesign
HGF - Programmthema:Digitalisierung und Systemtechnologie
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SY - Energiesystemtechnologie und -analyse
DLR - Teilgebiet (Projekt, Vorhaben):E - Energiesystemtechnologie
Standort: Oldenburg
Institute & Einrichtungen:Institut für Vernetzte Energiesysteme > Energiesystemanalyse, OL
Hinterlegt von: Witte, Francesco
Hinterlegt am:18 Feb 2026 14:59
Letzte Änderung:18 Feb 2026 14:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.