Schwabe, Mierk und Pastori, Lorenzo und Sarandrea, Valentina und Eyring, Veronika (2026) Quantum Machine Learning for Climate Modelling. In: IEEE International Conference on Quantum Artificial Intelligence (QAI), Seiten 73-78. IEEE Xplore. 2025 IEEE International Conference on Quantum Artificial Intelligence (QAI), 2025-11-02 - 2025-11-05, Naples, Italy. doi: 10.1109/QAI63978.2025.00019. ISBN 979-8-3315-6986-0.
|
PDF
4MB |
Kurzfassung
Quantum machine learning (QML) is making rapid progress, and QML-based models hold the promise of quantum advantages such as potentially higher expressivity and generalizability than their classical counterparts. Here, we present work on using a quantum neural net (QNN) to develop a parameterization of cloud cover for an Earth system model (ESM). ESMs are needed for predicting and projecting climate change, and can be improved in hybrid models incorporating both traditional physics-based components as well as machine learning (ML) models. We show that a QNN can predict cloud cover with a performance similar to a classical NN with the same number of free parameters and significantly better than the traditional scheme. We also analyse the learning capability of the QNN in comparison to the classical NN and show that, at least for our example, QNNs learn more consistent relationships than classical NNs.
| elib-URL des Eintrags: | https://elib.dlr.de/222462/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||||||
| Titel: | Quantum Machine Learning for Climate Modelling | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 23 Januar 2026 | ||||||||||||||||||||
| Erschienen in: | IEEE International Conference on Quantum Artificial Intelligence (QAI) | ||||||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| DOI: | 10.1109/QAI63978.2025.00019 | ||||||||||||||||||||
| Seitenbereich: | Seiten 73-78 | ||||||||||||||||||||
| Verlag: | IEEE Xplore | ||||||||||||||||||||
| ISBN: | 979-8-3315-6986-0 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Earth;Climate change;Climate;Quantum advantage;Explainable AI;Clouds;Artificial neural networks;Predictive models;quantum machine learning;explainable ai;climate modelling | ||||||||||||||||||||
| Veranstaltungstitel: | 2025 IEEE International Conference on Quantum Artificial Intelligence (QAI) | ||||||||||||||||||||
| Veranstaltungsort: | Naples, Italy | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 2 November 2025 | ||||||||||||||||||||
| Veranstaltungsende: | 5 November 2025 | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Quantencomputing | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse | ||||||||||||||||||||
| Hinterlegt von: | Schwabe, Dr. Mierk | ||||||||||||||||||||
| Hinterlegt am: | 02 Feb 2026 07:57 | ||||||||||||||||||||
| Letzte Änderung: | 02 Feb 2026 07:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags