elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Automated Numerical Linearization for LFT Modelling Applied to Worst-Case Analysis of Launch Vehicles.

Bucchi, Gabriele (2025) Automated Numerical Linearization for LFT Modelling Applied to Worst-Case Analysis of Launch Vehicles. Masterarbeit, Politecnico Milano.

[img] PDF - Nur DLR-intern zugänglich bis 2030
3MB

Kurzfassung

Launch vehicles operate across highly dynamic flight regimes, where uncertainties in aerodynamics, structures, propulsion, and actuation critically affect performance and robustness. Classical robustness margins and Monte Carlo campaigns provide partial evidence but cannot ensure deterministic guarantees. Structured singular-value (µ) analysis can deliver such guarantees, yet its adoption is hindered by the challenge of generating Linear Fractional Transformation (LFT) models from complex nonlinear dynamics. This thesis develops a methodology that places numerical linearization at the core of the verification workflow. Compared to analytical derivations,often infeasible for large scale aerospace systems, numerical linearization is automatable, scalable across operating points, and directly compatible with industrial modelling practices. The proposed pipeline converts nonlinear subsystems into numerically linearized Linear Time Invariant (LTI) models, embeds structured uncertainties, and prepares them for robust analysis within the LFT framework. Two complementary validation steps are presented. On a representative toy example, the complete workflow—from nonlinear simulation to µ-analysis—is demonstrated, showing that deterministic worst-case evaluation can identify fragile perturbations not revealed by Monte Carlo sampling. In a simulation environment developed for the CALLISTO misson launcher model, the approach has been applied to selected subsystems, demonstrating that numerical linearization can be executed reliably and consistently in an industrial context, producing structured models suitable for subsequent robustness verification. Together, these results establish numerical linearization as a practical foundation for scalable LFT-based verification. While full µ-certification and complete subsystem coverage remain topics for future work, the methodology enables the systematic integration of deterministic robustness tools into launcher verification pipelines and provides a basis for hybrid deterministic–probabilistic clearance frameworks.

elib-URL des Eintrags:https://elib.dlr.de/221900/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Automated Numerical Linearization for LFT Modelling Applied to Worst-Case Analysis of Launch Vehicles.
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bucchi, Gabrielegabriele.bucchi (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorRedondo Gutierrez, Jose LuisJose.RedondoGutierrez (at) dlr.dehttps://orcid.org/0000-0002-0037-2299
Thesis advisorSagliano, MarcoMarco.Sagliano (at) dlr.deNICHT SPEZIFIZIERT
Datum:2025
Open Access:Nein
Seitenanzahl:102
Status:veröffentlicht
Stichwörter:numerical linearization, Linear Fractional Transformation (LFT), µ-analysis, launch vehicles, robustness verification, worst-case analysis
Institution:Politecnico Milano
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt ReFEx - Reusability Flight Experiment
Standort: Bremen
Institute & Einrichtungen:Institut für Raumfahrtsysteme > Navigations- und Regelungssysteme
Hinterlegt von: Redondo Gutierrez, Jose Luis
Hinterlegt am:09 Jan 2026 12:26
Letzte Änderung:09 Jan 2026 12:27

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.