elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Autonomous State Estimation for Vision-Based Navigation in Lunar Landing

Del Monte, Cristina (2025) Autonomous State Estimation for Vision-Based Navigation in Lunar Landing. Masterarbeit, Politecnico di Milano.

[img] PDF - Nur DLR-intern zugänglich
9MB

Kurzfassung

Since the dawn of space exploration, the Moon has been the primary target of numerous missions. In recent years, this interest has been renewed, as evidenced by the growing number of initiatives focused on lunar exploration led by space agencies and private companies. The main ambition is to establish a sustained human and robotic presence on the lunar surface, enabling the construction of permanent infrastructure and the exploration of scientifically valuable regions such as the lunar south pole. To achieve these objectives, onboard navigation systems must be both autonomous and precise to enable safe and accurate landings. While the long-term solution may involve the deployment of a lunar constellation providing positioning and communication services, in the near term this challenge can be addressed through crater-based optical navigation. This work assesses the integration of Crater Navigation (CNav), a crater identification and matching algorithm developed by the German Aerospace Center (DLR), into a navigation system designed for absolute navigation in the lunar environment. The implemented system is based on a sensor fusion scheme that combines measurements from an inertial measurement unit, a star tracker and CNav. In particular, an error-state extended Kalman filter is employed to estimate the spacecraft’s position, velocity, and attitude with respect to a Moon-Centered Moon-Fixed reference frame. Simulation results demonstrate that the filter consistently estimates the state variables and their associated uncertainties in both orbital and descent phases. In particular, promising performance is achieved in position and attitude estimation, showing that CNav-based optical navigation is a promising candidate for future autonomous lunar navigation systems. This work highlights the potential of crater-based navigation systems as a key component for upcoming lunar exploration campaigns.

elib-URL des Eintrags:https://elib.dlr.de/221882/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Autonomous State Estimation for Vision-Based Navigation in Lunar Landing
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Del Monte, Cristinacristina.delmonte (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorAndreis, EleonoraEleonora.Andreis (at) dlr.dehttps://orcid.org/0000-0002-1297-2021
Datum:2025
Open Access:Nein
Seitenanzahl:122
Status:veröffentlicht
Stichwörter:autonomous optical navigation crater lunar navigation orbit estimation
Institution:Politecnico di Milano
Abteilung:Department of Aerospace Science and Technology
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):R - keine Zuordnung
Standort: Bremen
Institute & Einrichtungen:Institut für Raumfahrtsysteme > Navigations- und Regelungssysteme
Hinterlegt von: Andreis, Eleonora
Hinterlegt am:09 Jan 2026 12:25
Letzte Änderung:09 Jan 2026 12:25

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.