Jadon, Arpit und Niemeijer, Joshua und Asano, Yuki (2026) Test-Time Modification: Inverse Domain Transformation for Robust Perception. ArXiv [Conference TBA], 2026-01-05, TBA. doi: 10.48550/arXiv.2512.13454. (eingereichter Beitrag)
|
PDF
12MB |
Offizielle URL: https://arxiv.org/abs/2512.13454
Kurzfassung
Generative foundation models contain broad visual knowledge and can produce diverse image variations, making them particularly promising for advancing domain generalization tasks. While they can be used for training data augmentation, synthesizing comprehensive target-domain variations remains slow, expensive, and incomplete. We propose an alternative: using diffusion models at test time to map target images back to the source distribution where the downstream model was trained. This approach requires only a source domain description, preserves the task model, and eliminates large-scale synthetic data generation. We demonstrate consistent improvements across segmentation, detection, and classification tasks under challenging environmental shifts in real-to-real domain generalization scenarios with unknown target distributions. Our analysis spans multiple generative and downstream models, including an ensemble variant for enhanced robustness. The method achieves substantial relative gains: 137% on BDD100K-Night, 68% on ImageNet-R, and 62% on DarkZurich.
| elib-URL des Eintrags: | https://elib.dlr.de/221820/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Anderer) | ||||||||||||||||
| Titel: | Test-Time Modification: Inverse Domain Transformation for Robust Perception | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 5 Januar 2026 | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.48550/arXiv.2512.13454 | ||||||||||||||||
| Status: | eingereichter Beitrag | ||||||||||||||||
| Stichwörter: | Diffusion models, generative models, domain generalization, test-time modification, computer vision, machine learning | ||||||||||||||||
| Veranstaltungstitel: | ArXiv [Conference TBA] | ||||||||||||||||
| Veranstaltungsort: | TBA | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsdatum: | 5 Januar 2026 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||
| HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
| DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - ACT4Transformation - Automated and Connected Technologies for Mobility Transformation | ||||||||||||||||
| Standort: | Braunschweig | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Digitalisierter Straßenverkehr Institut für Verkehrssystemtechnik > Kooperative Straßenfahrzeuge und Systeme | ||||||||||||||||
| Hinterlegt von: | Jadon, Arpit | ||||||||||||||||
| Hinterlegt am: | 19 Jan 2026 07:56 | ||||||||||||||||
| Letzte Änderung: | 19 Jan 2026 07:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags