elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Detector-Augmented SAMURAI for Long-Duration Drone Tracking

Lenhard, Tamara und Weinmann, Andreas und Snoussi, Hichem und Koch, Tobias (2026) Detector-Augmented SAMURAI for Long-Duration Drone Tracking. In: 2026 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW). IEEE/CVF Winter Conference on Applications of Computer Vision 2026 (WACV2026) Workshops, 2026-03-06 - 2026-03-10, Tucson, Arizona, USA.

[img] PDF - Nur DLR-intern zugänglich
1MB
[img] PDF - Nur DLR-intern zugänglich
5MB

Kurzfassung

Robust long-term tracking of drones is a critical requirement for modern surveillance systems, given their increasing threat potential. While detector-based approaches typically achieve strong frame-level accuracy, they often suffer from temporal inconsistencies caused by frequent detection dropouts. Despite its practical relevance, research on RGB-based drone tracking is still limited and largely reliant on conventional motion models. Meanwhile, foundation models like SAMURAI have established their effectiveness across other domains, exhibiting strong category-agnostic tracking performance. However, their applicability in drone-specific scenarios has not been investigated yet. Motivated by this gap, we present the first systematic evaluation of SAMURAI's potential for robust drone tracking in urban surveillance settings. Furthermore, we introduce a detector-augmented extension of SAMURAI to mitigate sensitivity to bounding-box initialization and sequence length. Our findings demonstrate that the proposed extension significantly improves robustness in complex urban environments, with pronounced benefits in long-duration sequences - especially under drone exit-re-entry events. The incorporation of detector cues yields consistent gains over SAMURAI’s zero-shot performance across datasets and metrics, with success rate improvements of up to +0.393 and FNR reductions of up to -0.475.

elib-URL des Eintrags:https://elib.dlr.de/221811/
Dokumentart:Konferenzbeitrag (Vortrag, Poster)
Titel:Detector-Augmented SAMURAI for Long-Duration Drone Tracking
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Lenhard, TamaraTamara.Lenhard (at) dlr.dehttps://orcid.org/0000-0001-9191-0170NICHT SPEZIFIZIERT
Weinmann, Andreasandreas.weinmann (at) thws.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Snoussi, Hichemhichem.snoussi (at) utt.frNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Koch, TobiasTobias.Koch (at) dlr.dehttps://orcid.org/0000-0003-1279-0209NICHT SPEZIFIZIERT
Datum:2026
Erschienen in:2026 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:akzeptierter Beitrag
Stichwörter:drone tracking, urban surveillance, SAMURAI
Veranstaltungstitel:IEEE/CVF Winter Conference on Applications of Computer Vision 2026 (WACV2026) Workshops
Veranstaltungsort:Tucson, Arizona, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:6 März 2026
Veranstaltungsende:10 März 2026
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Rhein-Sieg-Kreis
Institute & Einrichtungen:Institut für den Schutz terrestrischer Infrastrukturen
Institut für den Schutz terrestrischer Infrastrukturen > Digitale Zwillinge von Infrastrukturen
Hinterlegt von: Lenhard, Tamara
Hinterlegt am:14 Jan 2026 15:13
Letzte Änderung:14 Jan 2026 15:13

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.