elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Investigating Machine Learning Techniques for Estimating Line-of-sight Gravity Differences from GRACE-FO data

Bergin, Daisy und Bredlau, Marvin und Weigelt, Matthias (2025) Investigating Machine Learning Techniques for Estimating Line-of-sight Gravity Differences from GRACE-FO data. IAG Scientific Assembly 2025, 2025-09-01 - 2025-09-05, Rimini, Italien.

[img] PDF - Nur DLR-intern zugänglich
5MB

Kurzfassung

Time Variable Gravity (TVG) observations provide crucial insights into Earth’s dynamic processes, including phenomena such as ice sheet dynamics, ocean circulation, tectonic activity and changes in mass distribution, which are key to understanding climate change and natural disaster forecasting. The GRACE-FO system with its precise inter-satellite distance measurements is used to obtain gravity field solutions, which are computed monthly and thus impede the observation of short-term processes such as hydrological phenomena. By linking between Line-of-Sight (LOS) gravity differences and intersatellite ranging data, in-situ gravity estimates along the orbit can be generated. While these point-wise estimates yield a higher temporal resolution, a key challenge in this method is the derivation of an effective transfer function which translates geometric ranging observations into gravity field quantities. Traditional derivation techniques have various disadvantages, such as limitation to high frequency regimes and noise sensitivity. Using Machine Learning techniques may address some of those limitations by deriving an adaptive, data-driven transfer function. This work explores the implementation of deep neural networks to derive LOS gravity differences from intersatellite ranging data. The approach is evaluated against standard methods, such as monthly spherical harmonic solutions and daily Kalman-filtered solutions. By utilising machine learning, this study seeks to refine TVG observations to enable both improved monitoring of short-term geophysical processes and understanding of the GRACE-FO LRI measurement system.

elib-URL des Eintrags:https://elib.dlr.de/221674/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Investigating Machine Learning Techniques for Estimating Line-of-sight Gravity Differences from GRACE-FO data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bergin, DaisyUniversität BremenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bredlau, Marvinmarvin.bredlau (at) dlr.dehttps://orcid.org/0009-0007-3803-378XNICHT SPEZIFIZIERT
Weigelt, Matthiasmatthias.weigelt (at) dlr.dehttps://orcid.org/0000-0001-9669-127XNICHT SPEZIFIZIERT
Datum:4 September 2025
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Satellite Gravimetry GRACE Follow-On Line-of-Sight Gravity Differences
Veranstaltungstitel:IAG Scientific Assembly 2025
Veranstaltungsort:Rimini, Italien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:1 September 2025
Veranstaltungsende:5 September 2025
Veranstalter :IAG
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - Inertial Sensing for Space Applications
Standort: Hannover
Institute & Einrichtungen:Institut für Satellitengeodäsie und Inertialsensorik > Satellitengeodäsie und geodätische Modellierung
Hinterlegt von: Weigelt, Matthias
Hinterlegt am:02 Jan 2026 15:49
Letzte Änderung:15 Jan 2026 10:06

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.