elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Combined use of R-VSPI and VSPI for enhanced quantification of fire severity in south-eastern Australian forests

Chhabra, Aakash und Rüdiger, Christoph und Hilton, James und Nolan, Rachael H. und Bendall, Eli R. und Yebra, Marta und Jagdhuber, Thomas (2025) Combined use of R-VSPI and VSPI for enhanced quantification of fire severity in south-eastern Australian forests. Remote Sensing of Environment, 333 (115163). Elsevier. doi: 10.1016/j.rse.2025.115163. ISSN 0034-4257.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
13MB

Offizielle URL: https://www.scopus.com/pages/publications/105024750962

Kurzfassung

Wildfires, intensified by climate change, necessitate advanced methods for accurate and near-real-time fire severity mapping to improve emergency response and post-fire recovery strategies. Satellite remote sensing, combined with supervised learning approaches, enhances the accuracy and efficiency of fire severity mapping. This study introduces Decision-Based Hierarchical Learning (DBHL), a novel multi-sensor fire severity classification model that integrates Synthetic Aperture Radar (SAR; Sentinel-1 backscatter) and optical (Sentinel-2 reflectance) data. The model was applied to assess wildfire impacts on temperate forests during the 2019/20 "Black Summer" wildfire season in south-eastern Australia. DBHL incorporated SAR-based RADAR-Vegetation Structure Perpendicular Index (R-VSPI) and optical-based Vegetation Structure Perpendicular Index (VSPI) as candidate indices. By integrating these complementary datasets, DBHL leverages both structural and physiological changes as fire severity indicators, addressing limitations in single-sensor approaches. A pixel-wise approach was employed to spatially upscale the applicability of the R-VSPI and VSPI indices for fire severity assessment across the entire region. Using field data, the sensitivities of the R-VSPI and VSPI indices were validated during the immediate post-fire to one-year post-fire period. DBHL was trained and evaluated with a focus on comparing its performance against independent R-VSPI and VSPI classifications. The findings reveal the unique strengths of each index across various fire severity classes, demonstrating their complementary value. R-VSPI is more sensitive to structural changes in forests, while VSPI excels in identifying changes related to canopy-level disturbances. One-year post-fire recovery analysis shows distinct spatial patterns, with VSPI indicating faster recovery in surface vegetation and R-VSPI highlighting prolonged structural recovery. The DBHL model demonstrates the complementary strengths of the indices, allowing fire severity assessments to be contextualized across vertical vegetation strata, distinguishing between canopy-based damage indicators and underlying structural changes. DBHL outperformed single-sensor approaches, achieving the highest classification accuracy (overall accuracy=88.89%, kappa=0.86), particularly improving differentiation of Moderate (partial canopy scorch) and High (full crown scorch) severity with a producer's accuracy of 100%, and 80%, respectively. Future research is aimed at integrating multi-wavelength SAR, including L-band (1.25 GHz) and P-band (0.43 GHz), along with LiDAR measurements to enhance structural fire severity assessments. © 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0/

elib-URL des Eintrags:https://elib.dlr.de/221650/
Dokumentart:Zeitschriftenbeitrag
Titel:Combined use of R-VSPI and VSPI for enhanced quantification of fire severity in south-eastern Australian forests
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Chhabra, AakashMonash University, AustraliaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rüdiger, ChristophMonash University, AustraliaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hilton, JamesCovey Associates, Maroochydore, Queensland 4558, AustraliaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Nolan, Rachael H.Western Sydney University, AustraliaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bendall, Eli R.Western Sydney University, AustraliaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Yebra, MartaThe Australian National University, CanberraNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jagdhuber, ThomasThomas.Jagdhuber (at) dlr.dehttps://orcid.org/0000-0002-1760-2425NICHT SPEZIFIZIERT
Datum:29 November 2025
Erschienen in:Remote Sensing of Environment
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:333
DOI:10.1016/j.rse.2025.115163
Verlag:Elsevier
ISSN:0034-4257
Status:veröffentlicht
Stichwörter:Field-validation; Fire severity; Sentinel-1; Sentinel-2; Supervised classification
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Sicherheitsrelevante Erdbeobachtung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme > Aufklärung und Sicherheit
Hinterlegt von: Jagdhuber, Dr Thomas
Hinterlegt am:23 Dez 2025 11:39
Letzte Änderung:23 Dez 2025 11:39

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.