elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Atmospheric Remote Sensing with Airborne and Spaceborne GNSS Reflectometry: from Tropospheric to Ionospheric Applications

Moreno Bulla, Mario Andres (2025) Atmospheric Remote Sensing with Airborne and Spaceborne GNSS Reflectometry: from Tropospheric to Ionospheric Applications. Dissertation, Technische Universität Berlin. doi: 10.14279/depositonce-24799.

[img] PDF
44MB

Kurzfassung

Since its introduction in the 1990s, GNSS Reflectometry (GNSS-R) has emerged as a revolutionary remote sensing technique, demonstrating vast potential for characterizing surface properties across various applications and environments. Today, GNSS-R continues to evolve, supported by increasing operational spaceborne missions such as PRETTY, CYGNSS, SMAP GNSS-R, and TRITON, alongside upcoming missions like HydroGNSS. These missions aim to advance scientific knowledge and generate commercial products, such as those from the LEMUR constellation operated by Spire Global Inc. In addition to its surface-related applications, GNSS-R offers significant potential for atmospheric monitoring by exploiting the differences between the direct signals, which provide information above the receiver, and reflected signals, which capture information below the receiver. However, compared to its extensive application in surface studies, the use of GNSS-R for atmospheric research remains relatively underdeveloped, presenting an opportunity for further exploration to enhance its capabilities in ionospheric and tropospheric studies. This dissertation addresses this opportunity initially through airborne experiments, which serve as an effective tool for testing concepts and refining methodologies. Airborne GNSS-R data are utilized to demonstrate the feasibility of tropospheric parameter retrieval, specifically Zenith Total Delay (ZTD), over coastal waters. The proposed method yielded promising results, with relative deviations between 5% and 24% compared to the typical ZTD value of 2.3 m at sea level, highlighting the potential for tropospheric monitoring using coherent phase observations. For ionospheric studies, this thesis begins by conducting simulations to characterize ionospheric effects on GNSS-R signals at grazing angles, leveraging orbital data from low Earth orbit CubeSats and climatological three-dimensional electron density models. These efforts provided significant insights into model-based ionospheric delays, Doppler shifts, and variations in electron density peak height across diverse scenarios, including elevation ranges from 5° to 30°, established geographic regions, local times, and solar activity levels for spaceborne applications. The analysis further compares the findings from these simulations with GNSS-R code delay observations from the PRETTY mission. Results demonstrated deviations between 1.28 m and 4.96 m when compared with state-of-the-art climatological ionospheric models. Additionally, by applying a Chapman F-layer fitting, the observations provide valuable insights into the vertical structure of the ionosphere, showing differences in peak electron density height of ±15 km compared to values obtained from ionosondes and EISCAT ground stations. This thesis contributes to advancing GNSS-R as a potential tool for atmospheric and ionospheric monitoring by demonstrating its capability to retrieve tropospheric parameters and characterize ionospheric effects, while also highlighting opportunities and challenges for future research.

elib-URL des Eintrags:https://elib.dlr.de/221567/
Dokumentart:Hochschulschrift (Dissertation)
Titel:Atmospheric Remote Sensing with Airborne and Spaceborne GNSS Reflectometry: from Tropospheric to Ionospheric Applications
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Moreno Bulla, Mario Andresmario.moreno (at) dlr.dehttps://orcid.org/0009-0009-9124-8063NICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorSemmling, MaximilianMaximilian.Semmling (at) dlr.dehttps://orcid.org/0000-0002-5228-8072
Thesis advisorHoque, Mohammed MainulMainul.Hoque (at) dlr.deNICHT SPEZIFIZIERT
Datum:5 Dezember 2025
Open Access:Ja
DOI:10.14279/depositonce-24799
Seitenanzahl:95
Status:veröffentlicht
Stichwörter:GNSS Reflectometry; grazing angles; atmospheric monitoring; ionospheric delay; tropospheric delay; zenith total delay; slant total electron content; NEDM2020 model; PRETTY mission; code delay; carrier phase delay
Institution:Technische Universität Berlin
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - Ionosphäre
Standort: Neustrelitz
Institute & Einrichtungen:Institut für Solar-Terrestrische Physik > Weltraumwetterbeobachtung
Hinterlegt von: Moreno Bulla, Mario Andres
Hinterlegt am:29 Dez 2025 15:50
Letzte Änderung:29 Dez 2025 15:50

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.