Schreiber, Lena und Tarant, Yannick und Franke, Kai (2024) Synthetic training data bias in instance segmentation algorithms. SPIE Sensors + Imaging, 2024-09-16 - 2024-09-19, Edinburgh. doi: 10.1117/12.3030822.
|
PDF
20MB |
Kurzfassung
This study addresses the limitations of synthetic training data, which can lack realistic features present in real-world images, resulting in biased models and decreased performance. Leveraging Unreal Engine 5 (UE5), a synthetic dataset resembling realworld data from a specific scene is generated. Creating such realistic worlds is time-consuming, so varying domain randomization levels and preprocessing using image filters are explored. With different training set combination, consisting of various distribution of real, synthetic and augmented data, multiple models are trained based on Mask R-CNN and YOLO. After the training phase, an optimization procedure is applied to each model, enabling a comparative analysis of pipe instance segmentation quality for different algorithms based on the composition of the training set. The findings shed light on the efficacy and potential risks of employing synthetic data for training various instance segmentation models. This study provides valuable insights into mitigating challenges associated with data limitations in the training of state-of-the-art neural networks.
| elib-URL des Eintrags: | https://elib.dlr.de/221538/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Synthetic training data bias in instance segmentation algorithms | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 13 November 2024 | ||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1117/12.3030822 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Image segmentation, Data modelling, Synthetic data, AI | ||||||||||||||||
| Veranstaltungstitel: | SPIE Sensors + Imaging | ||||||||||||||||
| Veranstaltungsort: | Edinburgh | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 16 September 2024 | ||||||||||||||||
| Veranstaltungsende: | 19 September 2024 | ||||||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
| DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||
| DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||
| Standort: | Rhein-Sieg-Kreis | ||||||||||||||||
| Institute & Einrichtungen: | Institut für den Schutz terrestrischer Infrastrukturen > Detektionssysteme Institut für den Schutz terrestrischer Infrastrukturen | ||||||||||||||||
| Hinterlegt von: | Schreiber, Lena | ||||||||||||||||
| Hinterlegt am: | 07 Jan 2026 10:13 | ||||||||||||||||
| Letzte Änderung: | 07 Jan 2026 10:13 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags