Davoult, Jeanne Pascale und Eltschinger, Romain und Alibert, Yann (2025) Earth-like planet predictor: using AI to predict planet detection. Europlanet. EPSC-DPS Joint Meeting 2025, 2025-09-07 - 2025-09-12, Helsinki, Finland. doi: 10.5194/epsc-dps2025-1820.
|
PDF
90kB |
Offizielle URL: https://meetingorganizer.copernicus.org/EPSC-DPS2025/EPSC-DPS2025-1820.html
Kurzfassung
The search for Earth-like exoplanets, planets similar to the Earth and orbiting stars other than our Sun, is a central topic in today's planetary research, because extraterrestrial life is most likely to be found there. Researchers at DLR Berlin and the University of Bern have now developed an innovative machine learning model that identifies planetary systems that could potentially harbor Earth-like planets. The model could significantly accelerate and thus revolutionize the future search for habitable planets in the universe. A machine learning model is a statistical tool that is trained with data to recognize certain types of patterns and make predictions. The algorithm was trained and tested with data from the so-called “Bern Model of Planet Formation and Evolution”. The model was then applied to actually observed planetary systems and identified 44 systems that are highly likely to harbor undetected Earth-like planets. A further study confirmed the theoretical possibility for these systems to host an Earth-like planet. The use of this machine learning model to search more specifically for Earth-like planets could minimize search times and maximize the number of discoveries. This is a significant step in the search for planets with conditions favourable to life and, ultimately, for the search of life in the universe.
| elib-URL des Eintrags: | https://elib.dlr.de/221338/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Earth-like planet predictor: using AI to predict planet detection | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2025 | ||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| Band: | 18 | ||||||||||||||||
| DOI: | 10.5194/epsc-dps2025-1820 | ||||||||||||||||
| Verlag: | Europlanet | ||||||||||||||||
| Name der Reihe: | EPSC Abstracts | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Earth-like planets, exoplanets, PLATO, habitable zone, machine learning | ||||||||||||||||
| Veranstaltungstitel: | EPSC-DPS Joint Meeting 2025 | ||||||||||||||||
| Veranstaltungsort: | Helsinki, Finland | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 7 September 2025 | ||||||||||||||||
| Veranstaltungsende: | 12 September 2025 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt PLATO - PMC und Science | ||||||||||||||||
| Standort: | Berlin-Adlershof | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Planetenforschung > Extrasolare Planeten und Atmosphären | ||||||||||||||||
| Hinterlegt von: | Davoult, Jeanne Pascale | ||||||||||||||||
| Hinterlegt am: | 06 Jan 2026 14:10 | ||||||||||||||||
| Letzte Änderung: | 06 Jan 2026 14:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags