Lorenz, Benjamin (2025) Bridging the Sim-to-Real Gap for Monocular 3D Object Detection via Foundation Model-Guided Unsupervised Domain Adaption. Masterarbeit, IU International University of Applied Sciences.
|
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
For autonomous driving, monocular 3D object detection provides a scalable perception solution using inexpensive cameras, while synthetic data offers perfectly annotated and diverse training data. The primary obstacle to combining these technologies is the significant sim-to-real domain gap, where models fail to generalize from simulation to reality. To bridge this gap, this thesis introduces and evaluates a novel Unsupervised Domain Adaptation framework that uses foundation models to improve a Mean Teacher self-training process. The framework leverages semantic segmentation masks to filter noisy pseudo-labels, thereby stabilizing the teacher-student learning dynamic. I investigate both semantic and geometric guidance, finding that while semantic filtering is highly effective, current metric depth estimation is not yet suitable for this task. Through a series of experiments, the proposed semantic-guided framework demonstrates a significant performance improvement of over 34% compared to a standard UDA baseline, confirming the viability of this approach.
| elib-URL des Eintrags: | https://elib.dlr.de/221318/ | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Hochschulschrift (Masterarbeit) | ||||||||
| Titel: | Bridging the Sim-to-Real Gap for Monocular 3D Object Detection via Foundation Model-Guided Unsupervised Domain Adaption | ||||||||
| Autoren: |
| ||||||||
| DLR-Supervisor: |
| ||||||||
| Datum: | 12 Juli 2025 | ||||||||
| Open Access: | Nein | ||||||||
| Seitenanzahl: | 76 | ||||||||
| Status: | veröffentlicht | ||||||||
| Stichwörter: | Automated Driving, Unsupervised Domain Adaptation, Monocular 3D Object Detection, Sim-to-Real, Foundation Models, Self-Training, Pseudo-Label Filtering | ||||||||
| Institution: | IU International University of Applied Sciences | ||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
| HGF - Programm: | Verkehr | ||||||||
| HGF - Programmthema: | Straßenverkehr | ||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||
| DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - ACT4Transformation - Automated and Connected Technologies for Mobility Transformation | ||||||||
| Standort: | Berlin-Adlershof | ||||||||
| Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Kooperative Straßenfahrzeuge und Systeme | ||||||||
| Hinterlegt von: | Lorenz, Benjamin | ||||||||
| Hinterlegt am: | 16 Dez 2025 16:11 | ||||||||
| Letzte Änderung: | 16 Dez 2025 16:11 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags