elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Uncertainty-Aware ControlNet: Bridging Domain Gaps with Synthetic Image Generation

Niemeijer, Joshua und Ehrhardt, Jan und Handels, Heinz und Uzunova, Hristina (2025) Uncertainty-Aware ControlNet: Bridging Domain Gaps with Synthetic Image Generation. ICCV 2025 Workshops - The 4th Workshop on What is Next in Multimodal Foundation Models?, 2025-10-19 - 2025-10-23, Honolulu, Hawaii. doi: 10.48550/arXiv.2510.11346.

[img] PDF
1MB

Kurzfassung

Generative Models are a valuable tool for the controlled creation of high-quality image data. Controlled diffusion models like the ControlNet have allowed the creation of labeled distributions. Such synthetic datasets can augment the original training distribution when discriminative models, like semantic segmentation, are trained. However, this augmentation effect is limited since ControlNets tend to reproduce the original training distribution. This work introduces a method to utilize data from unlabeled domains to train ControlNets by introducing the concept of uncertainty into the control mechanism. The uncertainty indicates that a given image was not part of the training distribution of a downstream task, e.g., segmentation. Thus, two types of control are engaged in the final network: an uncertainty control from an unlabeled dataset and a semantic control from the labeled dataset. The resulting ControlNet allows us to create annotated data with high uncertainty from the target domain, i.e., synthetic data from the unlabeled distribution with labels. In our scenario, we consider retinal OCTs, where typically high-quality Spectralis images are available with given ground truth segmentations, enabling the training of segmentation networks. The recent development in Home-OCT devices, however, yields retinal OCTs with lower quality and a large domain shift, such that out-of-the-pocket segmentation networks cannot be applied for this type of data. Synthesizing annotated images from the Home-OCT domain using the proposed approach closes this gap and leads to significantly improved segmentation results without adding any further supervision. The advantage of uncertainty-guidance becomes obvious when compared to style transfer: it enables arbitrary domain shifts without any strict learning of an image style. This is also demonstrated in a traffic scene experiment.

elib-URL des Eintrags:https://elib.dlr.de/221280/
Dokumentart:Konferenzbeitrag (Vortrag, Poster)
Zusätzliche Informationen:The implementation is available: https://github.com/JNiemeijer/UnAICorN.git
Titel:Uncertainty-Aware ControlNet: Bridging Domain Gaps with Synthetic Image Generation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Niemeijer, JoshuaJoshua.Niemeijer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ehrhardt, Janjan.ehrhardt (at) uni-luebeck.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Handels, Heinzheinz.handels (at) uni-luebeck.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Uzunova, Hristinahristina.uzunova (at) dfki.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:20 Oktober 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.48550/arXiv.2510.11346
Status:veröffentlicht
Stichwörter:Computer Vision and Pattern Recognition, Artificial Intelligence, Generative Models
Veranstaltungstitel:ICCV 2025 Workshops - The 4th Workshop on What is Next in Multimodal Foundation Models?
Veranstaltungsort:Honolulu, Hawaii
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:19 Oktober 2025
Veranstaltungsende:23 Oktober 2025
Veranstalter :IEEE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - ACT4Transformation - Automated and Connected Technologies for Mobility Transformation
Standort: Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Kooperative Straßenfahrzeuge und Systeme
Hinterlegt von: Niemeijer, Joshua
Hinterlegt am:16 Dez 2025 16:29
Letzte Änderung:16 Dez 2025 16:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.