Niemeijer, Joshua und Ehrhardt, Jan und Handels, Heinz und Uzunova, Hristina (2025) Uncertainty-Aware ControlNet: Bridging Domain Gaps with Synthetic Image Generation. ICCV 2025 Workshops - The 4th Workshop on What is Next in Multimodal Foundation Models?, 2025-10-19 - 2025-10-23, Honolulu, Hawaii. doi: 10.48550/arXiv.2510.11346.
|
PDF
1MB |
Kurzfassung
Generative Models are a valuable tool for the controlled creation of high-quality image data. Controlled diffusion models like the ControlNet have allowed the creation of labeled distributions. Such synthetic datasets can augment the original training distribution when discriminative models, like semantic segmentation, are trained. However, this augmentation effect is limited since ControlNets tend to reproduce the original training distribution. This work introduces a method to utilize data from unlabeled domains to train ControlNets by introducing the concept of uncertainty into the control mechanism. The uncertainty indicates that a given image was not part of the training distribution of a downstream task, e.g., segmentation. Thus, two types of control are engaged in the final network: an uncertainty control from an unlabeled dataset and a semantic control from the labeled dataset. The resulting ControlNet allows us to create annotated data with high uncertainty from the target domain, i.e., synthetic data from the unlabeled distribution with labels. In our scenario, we consider retinal OCTs, where typically high-quality Spectralis images are available with given ground truth segmentations, enabling the training of segmentation networks. The recent development in Home-OCT devices, however, yields retinal OCTs with lower quality and a large domain shift, such that out-of-the-pocket segmentation networks cannot be applied for this type of data. Synthesizing annotated images from the Home-OCT domain using the proposed approach closes this gap and leads to significantly improved segmentation results without adding any further supervision. The advantage of uncertainty-guidance becomes obvious when compared to style transfer: it enables arbitrary domain shifts without any strict learning of an image style. This is also demonstrated in a traffic scene experiment.
| elib-URL des Eintrags: | https://elib.dlr.de/221280/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||||||
| Zusätzliche Informationen: | The implementation is available: https://github.com/JNiemeijer/UnAICorN.git | ||||||||||||||||||||
| Titel: | Uncertainty-Aware ControlNet: Bridging Domain Gaps with Synthetic Image Generation | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 20 Oktober 2025 | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| DOI: | 10.48550/arXiv.2510.11346 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Computer Vision and Pattern Recognition, Artificial Intelligence, Generative Models | ||||||||||||||||||||
| Veranstaltungstitel: | ICCV 2025 Workshops - The 4th Workshop on What is Next in Multimodal Foundation Models? | ||||||||||||||||||||
| Veranstaltungsort: | Honolulu, Hawaii | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 19 Oktober 2025 | ||||||||||||||||||||
| Veranstaltungsende: | 23 Oktober 2025 | ||||||||||||||||||||
| Veranstalter : | IEEE | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||||||
| HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
| DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - ACT4Transformation - Automated and Connected Technologies for Mobility Transformation | ||||||||||||||||||||
| Standort: | Braunschweig | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Kooperative Straßenfahrzeuge und Systeme | ||||||||||||||||||||
| Hinterlegt von: | Niemeijer, Joshua | ||||||||||||||||||||
| Hinterlegt am: | 16 Dez 2025 16:29 | ||||||||||||||||||||
| Letzte Änderung: | 16 Dez 2025 16:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags