Habash, Delzar und Borchers, Marten und bittner, eva (2025) Developing Machine Learning Models for the Analysis of Citizens’ Contributions from E-Participation. In: Developing Machine Learning Models for the Analysis of Citizens’ Contributions from E-Participation. EGOV-CeDEM-ePart conference, 2025-08-31 - 2025-09-04, Krems, Austria. ISSN 1613-0073.
|
PDF
1MB |
Offizielle URL: https://ceur-ws.org/Vol-4127/paper21.pdf
Kurzfassung
Citizen participation is increasingly relevant in acquiring local knowledge for urban projects. However, the increasing number of participants has created a problem of data overload, as manual analysis is hardly feasible due to its expense, time intensity, and slowness. AI and ML can help reduce or solve this issue. However, due to the lack of proper ML-based approaches, we investigate how textual contributions from citizens can be analyzed using machine learning techniques. To achieve this, we followed the knowledge discovery in the database framework, collected data, and trained several machine learning models, which we analyzed and compared. Our findings demonstrate that urban development contributions often cover multiple topics, making classification challenging, which also corresponds to the length of citizens’ contributions. Transformer models, however, show remarkable precision when compared to SVM models. With our findings, we contribute to the analysis of citizen contributions to support democratic processes and scalable citizen participation.
| elib-URL des Eintrags: | https://elib.dlr.de/221191/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Developing Machine Learning Models for the Analysis of Citizens’ Contributions from E-Participation | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 15 September 2025 | ||||||||||||||||
| Erschienen in: | Developing Machine Learning Models for the Analysis of Citizens’ Contributions from E-Participation | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| Herausgeber: |
| ||||||||||||||||
| ISSN: | 1613-0073 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Citizen Participation, Machine Learning, Urban Planning, Data Analysis, Knowledge Discovery in Databases, Transformer Models, Natural Language Processing. | ||||||||||||||||
| Veranstaltungstitel: | EGOV-CeDEM-ePart conference | ||||||||||||||||
| Veranstaltungsort: | Krems, Austria | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 31 August 2025 | ||||||||||||||||
| Veranstaltungsende: | 4 September 2025 | ||||||||||||||||
| Veranstalter : | University for Continuing Education, Krems, Austria | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
| DLR - Forschungsgebiet: | V - keine Zuordnung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - keine Zuordnung | ||||||||||||||||
| Standort: | Geesthacht | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Maritime Energiesysteme > Abteilung Virtuelles Schiff | ||||||||||||||||
| Hinterlegt von: | Habash, Delzar | ||||||||||||||||
| Hinterlegt am: | 15 Dez 2025 14:29 | ||||||||||||||||
| Letzte Änderung: | 15 Dez 2025 14:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags