elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Mercury surface UV-Vis-NIR spectral reflectance: Role of Graphite

Incaminato, Giorgia und Vuori, Mikko und Penttila, Antti und Carli, Cristian und Maturilli, Alessandro und Galiano, Anna und Petit, Laeticia und Ojha, Nirajan und Nasser, Khaldoon und Vainio, Markku und Muinonen, Karri (2025) Mercury surface UV-Vis-NIR spectral reflectance: Role of Graphite. EPSC-DPS Joint Meeting 2025, 2025-09-07 - 2025-09-12, Helsinki, Finnland. doi: 10.5194/epsc-dps2025-1361.

[img] PDF
767kB

Offizielle URL: https://meetingorganizer.copernicus.org/EPSC-DPS2025/EPSC-DPS2025-1361.html

Kurzfassung

It is of crucial importance to gain a more profound comprehension of the evolution and formation of Mercury, one of the terrestrial planets in the Solar System. The absence of a significant atmosphere, temperature oscillations, and the continuous exposition to solar wind, result in Mercury surface being a mixture of crystalline and glassy materials (Wurz et al., 2025).The particularity about the Mercury surface is that it has a remarkably low reflectance, but NASA's MESSENGER mission did not detect the absorption band of iron in the NIR, implying the iron content on Mercury surface would be low compared to other dark planetary bodies (Syal et al. 2015). However, observations and modelling suggest that a darkening agent is needed to explain the low reflectance in the Vis-NIR spectra of Mercury surface. The agent is thought to be carbon, particularly in the form of graphite (Lark et al. 2023).We proposed to test if introducing carbon would darken the Mercury surface analogue materials to the desired level. To investigate this, the material UV-Vis-NIR spectral reflectances were analysed. We prepared three types of samples: ‘‘St'' glass externally mixed with soot (Figure 1), 90NaPO3-10NaF (mol%) glass (Figure 2), and komatiite (volcanic glass 12%, olivine 35%, clinopyroxene 15%, plagioclase 21%, spinel 9%, opaques 4%, and serpentine 3%) to which different amounts of graphite up to 7.5-wt% were added into the glass batch prior to the melting. Komatiite is recognized as a good analogue for the Mercury surface (Caminiti et al. 2024; Wieder et al. 2012). The phosphate glass was melted at 750°C, whereas komatiite was melted at 1600°C.Analysis of the UV-Vis-NIR reflectance spectra of the komatiite glass revealed that graphite did not survive the melting process. The undoped komatiite showed the lowest reflectance and increasing the initial graphite content resulted in a brighter, rather than darker glass (Figure 3). High temperature and the presence of atmospheric oxygen in the furnace probably led to its oxidation, releasing it as CO or CO2.To qualitatively evaluate the surface properties of the grains and determine with precision the cause of what is suggested by the reflectance spectra of the komatiite intimately mixed with graphite, Scanning Electron Microscopy (SEM) was performed. The SEM analysis showed a progressive change in size, shape, and roughness of the grains with the increase of graphite initially added, with a direct correlation between their morphological irregularity and the graphite content used in the melting process of komatiite, which directly affect the optical properties of the material, leading to a higher reflectance for the komatiite powder with an initially higher -wt% of graphite. To evaluate the effect of graphite also on the komatiite, graphite was added externally in the same -wt% as previously. The reflectance spectra show that, when graphite is externally added, its effect is in line with the expectations for decreasing reflectance with increasing concentration (Figure 4).Our study confirms that graphite is an effective darkening agent and could plausibly contribute to the low reflectance of the Mercury surface. The main challenge has been the melting of the glass in an oxygenated environment, so future work will focus on replicating the melting process in an oxygen-free atmosphere.Figure 1: Spectral reflectance of the St glass powders. In black the reflectance spectrum of the undoped St glass powder; in red the reflectance spectrum of the St glass powder externally doped with 0.05 wt% of soot. Figure 2: Spectral reflectance of the 90NaPO3-10NaF (mol%) glasses with various wt% of graphite, designated as C, intimately added. As the amount of graphite added increases, reflectance decreases. Figure 3: Spectral reflectance of the komatiite glasses with various wt% of graphite, designated as C, intimately added. The spectra reveal that, as the amount of graphite initially added to the glass composition prior to the melting increases, the reflectance increases. Figure 4: Spectral reflectance of the komatiite glasses with various wt% of graphite, designated as C, externally added. The spectra reveal that as the amount of graphite externally added to the glass increases, the reflectance decreases. Caminiti, E., et al. (2024). Icarus, 420, 116191. Lark, L. H., et al. (2023). Earth and Planetary Science Letters, 613, 118192. Syal, M. B., et al. (2015). Nature Geoscience, 8(5), 352--356. Weider, S. Z., et al. (2012). J. Geophys. Res., 117, E00L05. Wurz, P., et al. (2025). The Planetary Science Journal, 6(1), 24.

elib-URL des Eintrags:https://elib.dlr.de/221093/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Mercury surface UV-Vis-NIR spectral reflectance: Role of Graphite
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Incaminato, Giorgia1University of Helsinki, Department of Physics, Helsinki, FinlandNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Vuori, Mikko1University of Helsinki, Department of Physics, Helsinki, FinlandNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Penttila, AnttiDep. of Physics, University of HelsinkiNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Carli, CristianINAF - IAPS, Via del Fosso del Cavaliere, 100, I-00133 Rome, ItalyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Maturilli, AlessandroAlessandro.Maturilli (at) dlr.dehttps://orcid.org/0000-0003-4613-9799NICHT SPEZIFIZIERT
Galiano, AnnaIstituto di Astrofisica e Planetologia Spaziali (IAPS-INAF), ItalyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Petit, LaeticiaLaboratory of Photonics, Tampere University, FinlandNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ojha, NirajanLaboratory of Photonics, Tampere University, FinlandNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Nasser, KhaldoonLaboratory of Photonics, Tampere University, FinlandNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Vainio, MarkkuLaboratory of Physical Chemistry, Department of Chemistry, University of Helsinki, FinlandNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Muinonen, KarriUniversity of HelsinkiNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:18
DOI:10.5194/epsc-dps2025-1361
Name der Reihe:EPSC Abstracts
Status:veröffentlicht
Stichwörter:Mercury, Graphite, BepiColombo
Veranstaltungstitel:EPSC-DPS Joint Meeting 2025
Veranstaltungsort:Helsinki, Finnland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:7 September 2025
Veranstaltungsende:12 September 2025
Veranstalter :Europlanet
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt BepiColombo - MERTIS und BELA
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetare Labore
Hinterlegt von: Maturilli, Dr. Alessandro
Hinterlegt am:07 Jan 2026 16:18
Letzte Änderung:07 Jan 2026 16:18

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.