elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Shaping, experimental evaluation and modelling of prototype iron oxide structures for catalytic splitting of sulphuric acid

Dimitrakis, Dimitrios und Agrafiotis, Christos und Bertino, Alice und de Oliveira, Lamark und Narducci, Andrea und Mougard Camacho, Pierre Francois und Vespa, Pierick (2025) Shaping, experimental evaluation and modelling of prototype iron oxide structures for catalytic splitting of sulphuric acid. 2025 MRS Spring Meeting & Exhibit, 2025-04-07 - 2025-04-11, Seattle, Washington USA.

[img] PDF - Nur DLR-intern zugänglich
2MB

Kurzfassung

In this work, prototype porous sulfuric acid splitting catalytic structures are prepared entirely from the catalytically active oxides-based phase and evaluated for their performance in a dedicated test reactor. Sulfuric acid splitting is a crucial step in the sulfuric acid recycling industry, so far implemented via thermal decomposition with fossil fuels. Furthermore, the decomposition of sulfuric acid is the high-temperature step of the Hybrid Sulfur cycle and the Sulfur Iodine cycle that are targeted on H2 production as well as the Solid Sulphur cycle proposed for power generation/heat storage. Typically, in catalytic sulfuric acid splitting, sulfuric acid from a reservoir is vaporized and driven first through a medium-temperature zone where its stoichiometric thermal dissociation into steam and SO3 takes place; the vapours mixture is then passed through the catalytic reactor at higher temperatures where the SO3 splitting is performed. The latter is the highest-temperature 650-1000oC endothermic reaction step where the heat can be supplied by Concentrating Solar Technologies since these temperatures are within the capabilities of state-of-the-art CST tower plants. State of the art materials investigated for sulfuric acid splitting catalysts include iron oxides. In this work, iron oxide structures of tailored geometries and porosity prepared entirely from the catalytically active phase carrier are presented. The manufacture of such Fe2O3 based structures, lies on the design rationale of circular economy principles; where performant materials must be from elements that are accessible and not in danger of a supply risk. A possible source of such iron-oxide materials are waste fractions (Fe-containing slags) discarded in large-scale from the steel industry. Iron oxide materials are shaped into monolithic honeycombs and inserted in a tubular lab-scale reactor for a complete evaluation of sulfuric acid splitting potential and performance. The reactor is automated to allow for increased exposure time and cyclability of each structure tested. The performance of the pure-iron oxide extruded monoliths is compared to inert (SiSiC) monoliths coated with a catalyst layer and with structures such as iron oxide foams. The experimental results feed a model describing each structure which is used to drive the design of a pilot-scale reactor for the catalytic splitting of sulfuric acid with renewable heat. For the first time, unique structures from cheap and abundant materials are prepared and shaped, then evaluated in a dedicated lab-reactor rig, under long-term operation for catalytic sulfuric acid splitting. This work is accompanied by a kinetic and reactor model guiding the design of a scaled-up pilot reactor, relevant to both the sulfuric acid (recycling) industry as well as the solar thermal community for heat storage or hydrogen production.

elib-URL des Eintrags:https://elib.dlr.de/220872/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Shaping, experimental evaluation and modelling of prototype iron oxide structures for catalytic splitting of sulphuric acid
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Dimitrakis, Dimitriosdimitrios.dimitrakis (at) dlr.dehttps://orcid.org/0000-0002-1666-5942NICHT SPEZIFIZIERT
Agrafiotis, ChristosChristos.Agrafiotis (at) dlr.dehttps://orcid.org/0000-0002-7140-9642NICHT SPEZIFIZIERT
Bertino, Alicealice.bertino (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
de Oliveira, Lamarklamark.de-oliveira (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Narducci, Andreaandrea.narducci (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mougard Camacho, Pierre FrancoisSaint Gobain ProvenceNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Vespa, PierickSaint Gobain ProvenceNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:7 April 2025
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Synthesis & Processing/Chemical Reaction/chemical reaction, Performance/Sustainability/circular economy, Performance/Sustainability /renewable
Veranstaltungstitel:2025 MRS Spring Meeting & Exhibit
Veranstaltungsort:Seattle, Washington USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:7 April 2025
Veranstaltungsende:11 April 2025
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Chemische Energieträger
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Solare Brennstoffe
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Future Fuels > Solare Prozessdemonstration
Institut für Future Fuels > Solarchemische Verfahrensentwicklung
Institut für Future Fuels
Hinterlegt von: Dimitrakis, Dimitrios
Hinterlegt am:12 Dez 2025 09:31
Letzte Änderung:12 Dez 2025 09:31

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.