elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Post-Earthquake Damage Mapping via Remote Sensing: Lessons from the 2023 Türkiye Disaster

Taşkin, Gülşen und Musaoğlu, Nebiye und Erten, Esra und Hänsch, Ronny und Yang, Lexie (2025) Post-Earthquake Damage Mapping via Remote Sensing: Lessons from the 2023 Türkiye Disaster. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Seiten 1-5. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2025.3641234. ISSN 1939-1404.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
1MB

Kurzfassung

This review addresses the urgent need for scalable, accurate, and reproducible remote sensing solutions following the February 2023 Türkiye earthquakes. It synthesizes the contributions of five peer-reviewed studies published in the IEEE JSTARS Special Issue on post-earthquake damage and risk assessment. These studies cover areas such as damage classification with deep learning, fusion of multisource remote sensing data, creation of benchmark datasets, detailed damage mapping, and analysis of geophysical signals using outgoing longwave radiation. The article summarizes the methodological approaches and the practical relevance of the reviewed studies for detecting, evaluating, and quantifying damage, and outlines key challenges, including model generalization, class ambiguity, and data integration. It also discusses emerging trends, including explainable artificial intelligence, multimodal data fusion, and open-data platforms. This synthesis provides a foundation for building robust, interpretable, and real-time disaster response systems and aims to guide future research in earthquake-related Earth observation and rapid damage assessment.

elib-URL des Eintrags:https://elib.dlr.de/220803/
Dokumentart:Zeitschriftenbeitrag
Titel:Post-Earthquake Damage Mapping via Remote Sensing: Lessons from the 2023 Türkiye Disaster
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Taşkin, GülşenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Musaoğlu, NebiyeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Erten, EsraNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hänsch, RonnyRonny.Haensch (at) dlr.dehttps://orcid.org/0000-0002-2936-6765NICHT SPEZIFIZIERT
Yang, LexieNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/JSTARS.2025.3641234
Seitenbereich:Seiten 1-5
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Remote sensing;Buildings;Disasters;Earthquakes;Accuracy;Satellite images;Satellites;Optical sensors;Benchmark testing;Transformers;Post-earthquake assessment;Türkiye earthquakes;deep learning;remote sensing;damage classification;dataset benchmark;disaster response;Earth observation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie
Hinterlegt von: Hänsch, Ronny
Hinterlegt am:10 Dez 2025 13:51
Letzte Änderung:10 Dez 2025 13:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.