elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Experimental Study of Endwall Film Cooling and Heat Transfer for Different Upstream Slot and Hole Geometries in an Annular Sector Cascade Under High-Speed and Low-Speed Conditions – Part 2: Heat Transfer and Aerodynamics

Landfester, Christian und Klappenberger, Moritz und Böhle, Martin und Krewinkel, Robert (2025) Experimental Study of Endwall Film Cooling and Heat Transfer for Different Upstream Slot and Hole Geometries in an Annular Sector Cascade Under High-Speed and Low-Speed Conditions – Part 2: Heat Transfer and Aerodynamics. ASME Journal of Turbomachinery, 148 (3), Seiten 1-12. American Society of Mechanical Engineers (ASME). doi: 10.1115/1.4069494. ISSN 0889-504X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://doi.org/10.1115/1.4069494

Kurzfassung

Endwall film cooling strategies typically involve the employment of discrete holes or harness purge air that exits from the gaps between adjacent turbine components. Whichever the technique, the propagation of the coolant is predominantly governed by the secondary flows. To investigate these effects, experiments were conducted on various slot and hole designs in a high-speed annular sector cascade at the University of Kaiserslautern-Landau, Germany. The configurations included slots of different widths, axial placement, and exit angles, as well as hole designs varying in shape (e.g., cylindrical, fan-shaped, Nekomimi), spatial arrangement, and exit angle. All designs were tested across a broad range of blowing ratios at three different pressure ratios (1.48, 1.15, and 1.05) to examine Mach and Reynolds number effects. This study consists of two parts. The first was concerned with film cooling effectiveness. Part II addresses the effects of film cooling on heat transfer and aerodynamics, combining IR thermography measurements on the endwall with five-hole probe investigations at the passage outlet. The results show that coolant injection significantly influences both aerodynamics and heat transfer, with the specific impact depending strongly on injection geometry and operating conditions. While perpendicular injection leads to increased secondary flow losses and heat transfer, inclined injection provides better aerodynamic and thermal performance. Most notably, the heat transfer characteristics exhibit strong Mach number sensitivity in the passage throat, underlining the importance of high-speed testing.

elib-URL des Eintrags:https://elib.dlr.de/220768/
Dokumentart:Zeitschriftenbeitrag
Titel:Experimental Study of Endwall Film Cooling and Heat Transfer for Different Upstream Slot and Hole Geometries in an Annular Sector Cascade Under High-Speed and Low-Speed Conditions – Part 2: Heat Transfer and Aerodynamics
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Landfester, ChristianGerman Aerospace CenterNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Klappenberger, MoritzUniversity of Kaiserslautern-LandauNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Böhle, MartinUniversity of Kaiserslautern-LandauNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Krewinkel, RobertGraz University of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:23 Oktober 2025
Erschienen in:ASME Journal of Turbomachinery
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:148
DOI:10.1115/1.4069494
Seitenbereich:Seiten 1-12
Verlag:American Society of Mechanical Engineers (ASME)
Name der Reihe:Journal of Turbomachinery
ISSN:0889-504X
Status:veröffentlicht
Stichwörter:annular cascade, endwall film cooling, IR thermography, upstream slots, shaped holes, heat transfer and film cooling, measurement techniques
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Chemische Energieträger
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Solare Brennstoffe, E - Gasturbine
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Future Fuels
Hinterlegt von: Thanda, Vamshi Krishna
Hinterlegt am:12 Dez 2025 09:22
Letzte Änderung:12 Dez 2025 09:22

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.