elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Parameterization of physics-based models in Li-ion batteries by using Bayesian methods

Philipp, Micha und Kuhn, Yannick und Latz, Arnulf und Horstmann, Birger (2025) Parameterization of physics-based models in Li-ion batteries by using Bayesian methods. ELLIPSE Conference 2025, 2025-09-15 - 2025-09-16, Ulm, Deutschland.

[img] PDF
223kB

Kurzfassung

Modeling physical processes inside a battery is an inevitable step in accelerating battery research. Physics-based models enhance our underlying understanding and thereby improve the lifetime of lithium-ion batteries (LIBs) and future battery design. The procedure of parameterizing and validating a specific model, is an intractable challenge due to the complicated coupling of many mechanisms. Depending on the model complexity, the parametrization task becomes unsolvable for standard local approaches and global optimization becomes essential. In a first study, we investigate the parameterization of Solid-Electrolyte Interphase (SEI) growth models, as a simple case study for a global Bayesian algorithm. The ongoing growth of the SEI is considered the main degradation mechanism during battery storage, and it also makes a significant contribution during battery operation [1]. To distinguish the proposed SEI growth mechanisms, i.e., solvent diffusion, electron diffusion, and electron conduction, we perform inverse modeling of storage degradation data, to exclude other degradation effects, with an automated parameterization routine based on Bayesian methods [2]. We show that sample-efficient Bayesian methods [2,3] are outstanding tools to parametrize physics-based models within reasonable sample numbers, operate as a consistent model selection criterion, and give reliable uncertainties and correlations in the parametrization [4]. We show that suitable feature selection can further improve the algorithmic performance and ensure the correct identification of the physical features. As a result, we identify electron diffusion [5] as the dominant growth mechanism of the SEI during battery storage. For future studies this result can be used to analyze degradation data with more mechanisms included. In conclusion, our inverse model routine helps to identify and parametrize degradation mechanisms of LIBs. As this method is transferable to analyze battery data in general [6], we use this approach for the automated parameterization of full-cell battery models in a follow up study. References: 1. B. Horstmann et al., Current Opinion in Electrochemistry, 2019, DOI 10.1016/j.coelec.2018.10.013 2. Y. Kuhn, H. Wolf, A. Latz, B. Horstmann, Batteries & Supercaps. 2023, DOI: 10.1002/batt.202200374. 3. M. Adachi et al., IFAC-PapersOnLine, 2023, DOI: 10.1016/j.ifacol.2023.10.1073. 4. M. Philipp, Y. Kuhn, A. Latz, B. Horstmann, arXiv:2410.19478. 5. L. Köbbing, A. Latz, B. Horstmann, J. Power Sources 2023, DOI: 10.1016/j.jpowsour.2023.232651. 6. Y. Kuhn et al., arXiv:2505.13566.

elib-URL des Eintrags:https://elib.dlr.de/220765/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Parameterization of physics-based models in Li-ion batteries by using Bayesian methods
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Philipp, Michamicha.philipp (at) dlr.dehttps://orcid.org/0009-0002-8705-2059NICHT SPEZIFIZIERT
Kuhn, YannickYannick.Kuhn (at) dlr.dehttps://orcid.org/0000-0002-9019-2290NICHT SPEZIFIZIERT
Latz, ArnulfArnulf.Latz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Horstmann, Birgerbirger.horstmann (at) dlr.dehttps://orcid.org/0000-0002-1500-0578NICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Parameteridentifikation, Batteriemodelle, Maschinelles Lernen
Veranstaltungstitel:ELLIPSE Conference 2025
Veranstaltungsort:Ulm, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:15 September 2025
Veranstaltungsende:16 September 2025
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Elektrochemische Energiespeicherung
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Elektrochemische Speicher
Standort: Ulm
Institute & Einrichtungen:Institut für Technische Thermodynamik > Computergestützte Elektrochemie
Hinterlegt von: Philipp, Micha
Hinterlegt am:15 Dez 2025 15:59
Letzte Änderung:15 Dez 2025 15:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.