elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Parameterization of physics-based degradation models in Li-ion batteries by using Bayesian methods

Philipp, Micha und Kuhn, Yannick und Latz, Arnulf und Horstmann, Birger (2025) Parameterization of physics-based degradation models in Li-ion batteries by using Bayesian methods. PyBaMM Battery Modelling Conference 2025, 2025-02-05 - 2025-02-07, London, Vereinigtes Königreich.

[img] PDF
214kB

Kurzfassung

Modeling physical processes inside a battery is an inevitable step in understanding and improving the lifetime of lithium-ion batteries (LIBs). The actual parameterization and validation of a specific degradation model is an intractable challenge due to the complex coupling of many processes, leaving the dominant degradation mechanism yet unclear [1]. To fully understand the measured degradation in LIBs, one has to model several degradation mechanisms and their coupling all-encompassing. Due to the lack of individual markers for each degradation effect, it is insurmountable to model all effects simultaneously. Therefore, one has to analyze isolated effects first. In a first study, we investigate the responsible growth mechanism of the Solid-Electrolyte Interphase (SEI). The ongoing growth of the SEI is considered the main degradation mechanism during battery storage, and it also makes a significant contribution during battery operation [2]. To distinguish the proposed growth mechanisms, i.e., solvent diffusion, electron diffusion, and electron conduction, we inversely model degradation data with an automated parameterization routine based on Bayesian methods [3]. We emphasize that efficient Bayesian methods [3,4] are outstanding tools to parametrize physics-based models within reasonable sample numbers, operate as a consistent model selection criterion, and give reliable uncertainties and correlations in the overall and feature-specific parametrization [5]. We show that suitable feature selection can further improve the algorithmic performance and ensure the correct identification of the physical features. As a result, we identify electron diffusion [6] as the dominant growth mechanism of the SEI during battery storage. In conclusion, our inverse model routine helps to identify and parametrize degradation mechanisms of LIBs and is generalizable to include more mechanisms. This automatable method applies to analyzing battery data, model development, and validation and can, therefore, accelerate battery research. References: 1. S. OKane et al., Phys. Chem. Chem. Phys, 2022, DOI: 10.1039/d2cp00417h 2. B. Horstmann et al., Current Opinion in Electrochemistry, 2019, DOI 10.1016/j.coelec.2018.10.013 3. Y. Kuhn, H. Wolf, A. Latz, B. Horstmann, Batteries & Supercaps. 2023, DOI: 10.1002/batt.202200374. 4. M. Adachi et al., IFAC-PapersOnLine, 2023, DOI: 10.1016/j.ifacol.2023.10.1073. 5. M. Philipp, Y. Kuhn, A. Latz, B. Horstmann, arXiv:2410.19478. 6. L. Köbbing, A. Latz, B. Horstmann, J. Power Sources 2023, DOI: 10.1016/j.jpowsour.2023.232651.

elib-URL des Eintrags:https://elib.dlr.de/220750/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Parameterization of physics-based degradation models in Li-ion batteries by using Bayesian methods
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Philipp, Michamicha.philipp (at) dlr.dehttps://orcid.org/0009-0002-8705-2059NICHT SPEZIFIZIERT
Kuhn, YannickYannick.Kuhn (at) dlr.dehttps://orcid.org/0000-0002-9019-2290NICHT SPEZIFIZIERT
Latz, ArnulfArnulf.Latz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Horstmann, Birgerbirger.horstmann (at) dlr.dehttps://orcid.org/0000-0002-1500-0578NICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Parametrierung, Bayes'sche Methoden, Degradationsmodelle für Batterien
Veranstaltungstitel:PyBaMM Battery Modelling Conference 2025
Veranstaltungsort:London, Vereinigtes Königreich
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:5 Februar 2025
Veranstaltungsende:7 Februar 2025
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Elektrochemische Energiespeicherung
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Elektrochemische Speicher
Standort: Ulm
Institute & Einrichtungen:Institut für Technische Thermodynamik > Computergestützte Elektrochemie
Hinterlegt von: Philipp, Micha
Hinterlegt am:15 Dez 2025 16:00
Letzte Änderung:15 Dez 2025 16:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.