elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Experimental Study of Endwall Film Cooling and Heat Transfer for Different Upstream Slot and Hole Geometries in an Annular Sector Cascade Under High-Speed and Low-Speed Conditions, Part 1: Film Cooling Effectiveness

Landfester, Christian und Klappenberger, Moritz und Böhle, Martin und Krewinkel, Robert (2025) Experimental Study of Endwall Film Cooling and Heat Transfer for Different Upstream Slot and Hole Geometries in an Annular Sector Cascade Under High-Speed and Low-Speed Conditions, Part 1: Film Cooling Effectiveness. ASME Journal of Turbomachinery, 148 (3), Seiten 1-11. American Society of Mechanical Engineers (ASME). doi: 10.1115/1.4069493. ISSN 0889-504X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://doi.org/10.1115/1.4069494

Kurzfassung

Endwall film cooling in dry-low emission (DLE) gas turbines is crucial due to increased thermal loads from flat temperature profiles. Cooling strategies typically employ discrete holes or utilize purge air that exits from the gaps between adjacent turbine components. The downstream propagation of coolant, whether from discrete holes or component gaps, is significantly influenced by secondary flow patterns. To investigate these cooling mechanisms under engine-representative conditions, tests were performed in a high-speed annular sector cascade with four axisymmetrically contoured nozzle guide vanes (NGVs) at the University of Kaiserslautern-Landau. The study examined slot geometries, varying in width, axial location, and exit angle, as well as different hole configurations, including variations in shape (e.g., cylindrical, fan-shaped, Nekomimi), arrangement (single row, double row), and exit angle. To account for the influence of Mach and Reynolds numbers, experiments were conducted at pressure ratios between 1.48 and 1.05, with additional variation of the density ratio between unity and engine-like conditions. Film cooling effectiveness was measured using the pressure-sensitive paint (PSP) technique. Results show that inclined slots and shaped hole designs provide superior cooling performance, particularly at high blowing ratios. While low-speed testing proves valid for most configurations, shaped holes exhibit sensitivity to operating conditions near the leading edge. The present article focuses on film cooling effectiveness, with heat transfer and aerodynamic effects addressed in Part II of this paper series.

elib-URL des Eintrags:https://elib.dlr.de/220666/
Dokumentart:Zeitschriftenbeitrag
Titel:Experimental Study of Endwall Film Cooling and Heat Transfer for Different Upstream Slot and Hole Geometries in an Annular Sector Cascade Under High-Speed and Low-Speed Conditions, Part 1: Film Cooling Effectiveness
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Landfester, Christianchristian.landfester (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Klappenberger, MoritzUniversity of Kaiserslautern-LandauNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Böhle, MartinUniversity of Kaiserslautern-LandauNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Krewinkel, RobertGraz University of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:23 Oktober 2025
Erschienen in:ASME Journal of Turbomachinery
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:148
DOI:10.1115/1.4069493
Seitenbereich:Seiten 1-11
Verlag:American Society of Mechanical Engineers (ASME)
Name der Reihe:Journal of Turbomachinery
ISSN:0889-504X
Status:veröffentlicht
Stichwörter:annular cascade, endwall film cooling, pressure-sensitive paint, upstream slots, shaped holes, heat transfer and film cooling, measurement techniques
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Chemische Energieträger
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Solare Brennstoffe, E - Gasturbine
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Future Fuels > Solarchemische Verfahrensentwicklung
Institut für Future Fuels
Hinterlegt von: Thanda, Vamshi Krishna
Hinterlegt am:12 Dez 2025 09:18
Letzte Änderung:12 Dez 2025 09:18

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.