Marchante Arjona, Luis und Bhattacharjee, Protim und Jung, Peter (2025) Onboard Conformal Prediction for Domain Shift in Earth Observation. In: Onboard conformal prediction for domain shift in Earth observation, 13670 (136700), Seiten 95-102. SPIE. SPIE 13670, Artificial Intelligence and Image and Signal Processing for Remote Sensing XXXI, 2025-09-15 - 2025-09-19, Madrid, Spain. doi: 10.1117/12.3070046.
|
PDF
- Nur DLR-intern zugänglich
385kB |
Kurzfassung
Deep learning (DL) models are increasingly deployed in onboard Earth observation (EO) platforms, supporting a wide range of applications such as land-use classification, wildfire detection, maritime surveillance and atmospheric observation. In these settings, reliable uncertainty quantification (UQ) is essential, as predictions must remain trustworthy despite distributional shifts induced by noise, compression and varying environmental conditions. While conformal prediction provides distribution-free, finite-sample theoretical guarantees, its validity breaks down under distribution shift. In this paper, we study weighted conformal prediction for EO applications, where covariate shift is addressed by reweighting calibration samples using estimated density ratios.
| elib-URL des Eintrags: | https://elib.dlr.de/220485/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Onboard Conformal Prediction for Domain Shift in Earth Observation | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 20 November 2025 | ||||||||||||||||
| Erschienen in: | Onboard conformal prediction for domain shift in Earth observation | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Nein | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| Band: | 13670 | ||||||||||||||||
| DOI: | 10.1117/12.3070046 | ||||||||||||||||
| Seitenbereich: | Seiten 95-102 | ||||||||||||||||
| Herausgeber: |
| ||||||||||||||||
| Verlag: | SPIE | ||||||||||||||||
| Name der Reihe: | Artificial Intelligence and Image and Signal Processing for Remote Sensing XXXI | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | n, Earth Observation, Domain Shift, Covariate Shift, Onboard Inference, Uncertainty Quantification, Density Ratio Estimation | ||||||||||||||||
| Veranstaltungstitel: | SPIE 13670, Artificial Intelligence and Image and Signal Processing for Remote Sensing XXXI | ||||||||||||||||
| Veranstaltungsort: | Madrid, Spain | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 15 September 2025 | ||||||||||||||||
| Veranstaltungsende: | 19 September 2025 | ||||||||||||||||
| Veranstalter : | SPIE Optics and Photonics | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Robotik | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Synergieprojekt SKIAS 2.0 | ||||||||||||||||
| Standort: | Berlin-Adlershof | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Optische Sensorsysteme | ||||||||||||||||
| Hinterlegt von: | Marchante Arjona, Luis | ||||||||||||||||
| Hinterlegt am: | 15 Dez 2025 11:38 | ||||||||||||||||
| Letzte Änderung: | 15 Dez 2025 11:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags