Rizzoli, Paola und Martone, Michele (2025) Deep learning for compression and quantization of SAR data. In: Deep Learning for Synthetic Aperture Radar Remote Sensing Elsevier. Seiten 99-125. doi: 10.1016/B978-0-44-336344-3.00010-6.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.sciencedirect.com/science/chapter/edited-volume/abs/pii/B9780443363443000106
Kurzfassung
This chapter explores the application of deep learning techniques for the compression and quantization of SAR raw and focused data, addressing the growing challenges posed by next-generation SAR systems. The increasing resolution and coverage of SAR missions generate vast data volumes, necessitating efficient onboard data reduction methods. Traditional quantization techniques, such as Block-Adaptive Quantization (BAQ), have been widely used, but they lack adaptability to varying scene conditions. Recent advancements in AI-driven methods, particularly using convolutional neural networks (CNNs) and autoencoders, provide novel solutions to dynamically optimize bitrate allocation and improve compression performance. In this scenario, AI-based SAR data compression, although in its early stages, holds significant potential for enhancing future SAR missions by enabling more efficient data storage, transmission, and real-time applications.
| elib-URL des Eintrags: | https://elib.dlr.de/220469/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Beitrag in einem Lehr- oder Fachbuch | ||||||||||||
| Titel: | Deep learning for compression and quantization of SAR data | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | 2025 | ||||||||||||
| Erschienen in: | Deep Learning for Synthetic Aperture Radar Remote Sensing | ||||||||||||
| Referierte Publikation: | Nein | ||||||||||||
| Open Access: | Nein | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Nein | ||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||
| DOI: | 10.1016/B978-0-44-336344-3.00010-6 | ||||||||||||
| Seitenbereich: | Seiten 99-125 | ||||||||||||
| Herausgeber: |
| ||||||||||||
| Verlag: | Elsevier | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Synthetic Aperture Radar (SAR), Deep Learning, Quantization, Data Compression | ||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||
| Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > Satelliten-SAR-Systeme | ||||||||||||
| Hinterlegt von: | Martone, Michele | ||||||||||||
| Hinterlegt am: | 08 Dez 2025 17:47 | ||||||||||||
| Letzte Änderung: | 08 Dez 2025 17:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags