Semercioglu, Mert Can (2025) Experiences and Lessons Learned using the FI/ML Approach for Data-driven Turbulence Modeling. In: 22. STAB-Workshop - Jahresbericht 2025, Seiten 156-157. 22. STAB-Workshop 2025, 2025-11-10 - 2025-11-12, Göttingen, Deutschland.
|
PDF
- Nur DLR-intern zugänglich
2MB | |
|
PDF
214kB |
Offizielle URL: https://www.dlr.de/de/as/aktuelles/veranstaltungen/stab/stab_workshop/stab-jahresbericht_2023.pdf/@@download/file
Kurzfassung
Reynolds-averaged Navier-Stokes (RANS) turbulence models, due to their robustness and relatively low computational cost, are extensively used in aeronautical applications. Nevertheless, they show limited accuracy in complex flow conditions, such as separated flows, highly curved surfaces, and shock–boundary layer interactions. To enhance RANS predictions in such scenarios, a promising approach known as Field Inversion and Machine Learning (FI/ML) has been developed [1], which leverages data-driven techniques and machine-learning algorithms. RANS models enhanced with FI/ML have shown promising results when evaluated under flow conditions consistent with the training data, but their performance has been more limited in scenarios outside the training regime. This highlights the challenge of generalization, which has motivated the development of advanced training strategies [2], alternative machine-learning algorithms [3], conditional field-inversion techniques[4], and sensor-based modular modeling approaches [5].
| elib-URL des Eintrags: | https://elib.dlr.de/220434/ | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||
| Titel: | Experiences and Lessons Learned using the FI/ML Approach for Data-driven Turbulence Modeling | ||||||||
| Autoren: |
| ||||||||
| Datum: | November 2025 | ||||||||
| Erschienen in: | 22. STAB-Workshop - Jahresbericht 2025 | ||||||||
| Referierte Publikation: | Ja | ||||||||
| Open Access: | Nein | ||||||||
| Gold Open Access: | Nein | ||||||||
| In SCOPUS: | Nein | ||||||||
| In ISI Web of Science: | Nein | ||||||||
| Seitenbereich: | Seiten 156-157 | ||||||||
| Herausgeber: |
| ||||||||
| Name der Reihe: | Jahresbericht | ||||||||
| Status: | veröffentlicht | ||||||||
| Stichwörter: | turbulence modeling; data-driven; machine learning; FIML | ||||||||
| Veranstaltungstitel: | 22. STAB-Workshop 2025 | ||||||||
| Veranstaltungsort: | Göttingen, Deutschland | ||||||||
| Veranstaltungsart: | Workshop | ||||||||
| Veranstaltungsbeginn: | 10 November 2025 | ||||||||
| Veranstaltungsende: | 12 November 2025 | ||||||||
| Veranstalter : | DLR, STAB | ||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
| HGF - Programm: | Luftfahrt | ||||||||
| HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||
| DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||
| Standort: | Göttingen | ||||||||
| Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, GO | ||||||||
| Hinterlegt von: | Semercioglu, Mert Can | ||||||||
| Hinterlegt am: | 05 Dez 2025 11:40 | ||||||||
| Letzte Änderung: | 05 Dez 2025 11:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags