elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Multiscale modeling of oxygen loss and phase transformation in Ni-rich cathode materials: Impact of electrode microstructure

Both, Svenja und Hein, Simon und Danner, Timo und Latz, Arnulf (2025) Multiscale modeling of oxygen loss and phase transformation in Ni-rich cathode materials: Impact of electrode microstructure. 76th Annual ISE Meeting, 2025-09-07, Mainz, Germany.

[img] PDF - Nur DLR-intern zugänglich
74kB

Kurzfassung

Ni-rich cathode materials have gained increasing importance in current Li-ion battery development due to their high capacity. However, the stability of these materials has been shown to be a severe limitation when cycling to high cutoff voltages [1]. A layered-to-rocksalt transformation, accompanied by the loss of lattice oxygen, has been observed at the particle surface [1,2]. Previous work on this mechanism mainly focusses on experimental investigation, while a simulative approach can help to bridge the gap between theoretical insights and practical applicability in electrode manufacturing. In this contribution, we present a novel P2D modeling approach to describe oxygen release and phase reconstruction in Ni-rich cathode materials [3]. The model is informed by atomistic simulation results and coupled to 3D microstructure-resolved simulations conducted in the framework BEST [4]. While an indirect coupling between the P2D and 3D models allows us to study degradation over several cycles, we also present a fully-coupled phase reconstruction model on a real 3D electrode microstructure and discuss implications for the phase reconstruction process. Our work unravels the effect of electrode microstructure and individual electrode parameters on phase reconstruction and oxygen loss. By applying our modeling approach to a high-resolution FIB-SEM tomography of a commercial Ni-rich cathode [5], we further demonstrate how transport processes cause inhomogeneous phase reconstruction across the electrode. This results in a thicker rock-salt layer at cathode regions close to the separator, while a thinner reconstructed layer is present near the current collector. We will further discuss the impact of rocksalt formation on the particle scale, namely the impact of particle cracking and preferential degradation of individual crystal facets. By combining an efficient P2D approach with both atomistic insights as well as 3D microstructureresolved simulations, we are able to comprehensively study the effect of electrode architecture on performance and aging of Ni-rich cathode materials to improve future electrode design. References: [1] R. Jung et al., “Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries”, J. Electrochem. Soc., 164 (7), A1361- A1377 (2017) [2] S.-K. Jung et al, “Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries”, Adv. Energy Mater., 4,1300787 (2014) [3] S. Both et al., “Modeling oxygen loss and phase transformation in Ni-rich cathode materials: Impact of electrode microstructure”, Batteries & Supercaps, e202400802 (2025) [4] A. Latz and J. Zausch, “Thermodynamic consistent transport theory of Li-ion batteries”, J. Power Sources, 196, 3296-3302 (2011). [5] A. Lindner, S. Both et al, “Analyzing and Improving Conductive Networks in Commercial High-Energy Ni-rich Cathodes”, Batteries & Supercaps, 7, e202400503 (2024)

elib-URL des Eintrags:https://elib.dlr.de/220375/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Multiscale modeling of oxygen loss and phase transformation in Ni-rich cathode materials: Impact of electrode microstructure
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Both, Svenjasvenja.both (at) dlr.dehttps://orcid.org/0009-0000-0748-304XNICHT SPEZIFIZIERT
Hein, SimonSimon.Hein (at) dlr.dehttps://orcid.org/0000-0002-6728-9983NICHT SPEZIFIZIERT
Danner, TimoTimo.Danner (at) dlr.dehttps://orcid.org/0000-0003-2336-6059NICHT SPEZIFIZIERT
Latz, ArnulfArnulf.Latz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Lithium-Ionen Batterien, Mikrostruktur-aufgelöste Simulation, BEST, Kathodendegradation
Veranstaltungstitel:76th Annual ISE Meeting
Veranstaltungsort:Mainz, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:7 September 2025
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Elektrochemische Energiespeicherung
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Elektrochemische Speicher
Standort: Ulm
Institute & Einrichtungen:Institut für Technische Thermodynamik > Computergestützte Elektrochemie
Hinterlegt von: Both, Svenja
Hinterlegt am:08 Dez 2025 15:23
Letzte Änderung:08 Dez 2025 15:23

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.