Both, Svenja und Hein, Simon und Danner, Timo und Latz, Arnulf (2025) Multiscale Modeling of Oxygen Loss and Phase Transformation in Ni-rich Cathode Materials. Oxford Battery Modelling Symposium, 2025-07-24 - 2025-07-25, Oxford, UK.
|
PDF
- Nur DLR-intern zugänglich
135kB |
Kurzfassung
Nickel-rich layered oxide materials are known to suffer from structural degradation when cycled to high cutoff voltages [1]. A layered-to-rocksalt transformation, accompanied by the loss of lattice oxygen, has been observed at the particle surface [1,2]. Previous work on this mechanism mainly focused on experimental investigation, while a simulative approach can help to bridge the gap between theoretical insights and practical applicability in electrode manufacturing. In this contribution, we present a novel P2D modeling approach to describe oxygen release and phase reconstruction in Ni-rich cathode materials [3]. The model is informed by atomistic simulation results and coupled to 3D microstructure-resolved simulations conducted in the framework BEST [4]. A consistent parametrization ensures a good representation of the microstructure by the P2D model. While an indirect coupling between the P2D and 3D models allows us to study degradation over several cycles, we also present a fully-coupled phase reconstruction model on a real 3D electrode microstructure and discuss implications for the phase reconstruction process. Our work unravels the effect of electrode microstructure and individual electrode properties on phase reconstruction and oxygen loss. By applying our modeling approach to a high-resolution FIB-SEM tomography of a commercial Ni-rich cathode [5], we further demonstrate how transport processes cause inhomogeneous phase reconstruction across the electrode. This results in a thicker rocksalt layer at cathode regions close to the separator, while a thinner reconstructed layer is present near the current collector. We will further discuss the impact of rocksalt formation on the particle scale, namely the impact of particle cracking and preferential degradation of individual crystal facets. By combining an efficient P2D approach with both atomistic insights as well as 3D microstructure-resolved simulations, we are able to comprehensively study the effect of electrode architecture on performance and aging of Ni-rich cathode materials to improve future electrode design. [1] R. Jung et al., “Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries”, J. Electrochem. Soc., 164 (7), A1361- A1377 (2017) [2] S.-K. Jung et al., “Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries”, Adv. Energy Mater., 4, 1300787 (2014) [3] S. Both et al., “Modeling oxygen loss and phase transformation in Ni-rich cathode materials: Impact of electrode microstructure”, Batteries & Supercaps, e202400802 (2025) [4] A. Latz and J. Zausch, “Thermodynamic consistent transport theory of Li-ion batteries”, J. Power Sources, 196, 3296-3302 (2011). [5] A. Lindner, S. Both et al., “Analyzing and Improving Conductive Networks in Commercial High Energy Ni-rich Cathodes”, Batteries & Supercaps, 7, e202400503 (2024)
| elib-URL des Eintrags: | https://elib.dlr.de/220372/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
| Titel: | Multiscale Modeling of Oxygen Loss and Phase Transformation in Ni-rich Cathode Materials | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 2025 | ||||||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Lithium-Ionen Batterien, Mikrostrukturaufgelöste Simulation, Multiskalen Simulation, Kathodendegradation | ||||||||||||||||||||
| Veranstaltungstitel: | Oxford Battery Modelling Symposium | ||||||||||||||||||||
| Veranstaltungsort: | Oxford, UK | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 24 Juli 2025 | ||||||||||||||||||||
| Veranstaltungsende: | 25 Juli 2025 | ||||||||||||||||||||
| HGF - Forschungsbereich: | Energie | ||||||||||||||||||||
| HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||
| HGF - Programmthema: | Elektrochemische Energiespeicherung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Energie | ||||||||||||||||||||
| DLR - Forschungsgebiet: | E SP - Energiespeicher | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | E - Elektrochemische Speicher | ||||||||||||||||||||
| Standort: | Ulm | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Technische Thermodynamik > Computergestützte Elektrochemie | ||||||||||||||||||||
| Hinterlegt von: | Both, Svenja | ||||||||||||||||||||
| Hinterlegt am: | 08 Dez 2025 15:23 | ||||||||||||||||||||
| Letzte Änderung: | 08 Dez 2025 15:23 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags