elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Zeta Expansion for Long-Range Interactions under Periodic Boundary Conditions with Applications to Micromagnetics

Buchheit, Andreas A. und Busse, Jonathan K. und Keßler, Torsten und Rybakov, Filipp N. (2025) Zeta Expansion for Long-Range Interactions under Periodic Boundary Conditions with Applications to Micromagnetics. arXiv. [sonstige Veröffentlichung]

[img] PDF
1MB

Kurzfassung

We address the efficient computation of power-law-based interaction potentials of homogeneous $d$-dimensional bodies with an infinite $n$-dimensional array of copies, including their higher-order derivatives. This problem forms a serious challenge in micromagnetics with periodic boundary conditions and related fields. Nowadays, it is common practice to truncate the associated infinite lattice sum to a finite number of images, introducing uncontrolled errors. We show that, for general interacting geometries, the exact infinite sum for both dipolar interactions and generalized Riesz power-law potentials can be obtained by complementing a small direct sum by a correction term that involves efficiently computable derivatives of generalized zeta functions. We show that the resulting representation converges exponentially in the derivative order, reaching machine precision at a computational cost no greater than that of truncated summation schemes. In order to compute the generalized zeta functions efficiently, we provide a superexponentially convergent algorithm for their evaluation, as well as for all required special functions, such as incomplete Bessel functions. Magnetic fields can thus be evaluated to machine precision in arbitrary cuboidal domains periodically extended along one or two dimensions. We benchmark our method against known formulas for magnetic interactions and against direct summation for Riesz potentials with large exponents, consistently achieving full precision. In addition, we identify new corrections to the asymptotic limit of the demagnetization field and tabulate high-precision benchmark values that can be used as a reliable reference for micromagnetic solvers. The techniques developed are broadly applicable, with direct impact in other areas such as molecular dynamics.

elib-URL des Eintrags:https://elib.dlr.de/220307/
Dokumentart:sonstige Veröffentlichung
Titel:Zeta Expansion for Long-Range Interactions under Periodic Boundary Conditions with Applications to Micromagnetics
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Buchheit, Andreas A.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Busse, Jonathan K.jonathan.busse (at) dlr.dehttps://orcid.org/0009-0001-3323-3455199269778
Keßler, TorstenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rybakov, Filipp N.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:September 2025
Referierte Publikation:Nein
Open Access:Ja
DOI:10.48550/arXiv.2509.26274
Verlag:arXiv
Status:veröffentlicht
Stichwörter:FOS: Mathematics,FOS: Physical sciences,Numerical Analysis (math.NA),Strongly Correlated Electrons (cond-mat.str-el)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Quantencomputing
Standort: Rhein-Sieg-Kreis
Institute & Einrichtungen:Institut für Softwaretechnologie > High-Performance Computing
Institut für Softwaretechnologie
Hinterlegt von: Busse, Jonathan
Hinterlegt am:10 Dez 2025 13:51
Letzte Änderung:10 Dez 2025 13:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.