elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Low-temperature Heat Transport under Phonon Confinement

Semenov, Alexey und Sidorova, Mariia und Zaccone, Alessio (2025) Low-temperature Heat Transport under Phonon Confinement. 30th International Conference on Low Temperature Physics, 2025-08-07 - 2025-08-13, Bilbao, Spanien. (nicht veröffentlicht)

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Heat transport in crystalline bulk materials is well understood through the Debye theory of three-dimensional (3D) vibrational modes (phonons) and kinetic equation. In nanodevices at low temperatures, device dimensions are comparable to the phonon wavelengths that introduces confinement, i.e. the reduction of allowed phonon modes. We have recently shown [1] that confinement drastically affects not only the phonon heat capacity of a two-dimensional nanostrip, which has long been known [2], but also the heat flow from such nanodevice to 3D underlying media. To study heat outflow, we implemented the technique of the self-heating normal domain in a superconducting nanostrip on a dielectric substrate [3] and varied external magnetic field thus shifting the superconducting transition temperature. This approach allows one to reconstruct temperature dependences of the phonon heat capacity of the strip and thermal flux through the film/substrate interface. In order to quantitatively describe experimental results, we applied a dedicated model of heat flow [1], which accounts for phonon confinement in granules of a thin metal film. The confinement imposed by granules causes angular dependent cut-off (forbidden states) in the phonon density of states in the momentum space with a position inversely proportional to the mean size of granules. Consequently, phonons with wavevectors smaller that this cut-off are not excited in the film and do not contribute to the heat outflow. The model developed in [1] implies local thermal equilibrium of phonons, so called diffusion approximation or kinetic-equation approximation. Here we will report on the limitations of this model and its possible extension for the case of the ballistic heat transport. This study is motivated by the fact that the mean free path of acoustic phonon, which is set by the phonon-electron interaction time and the phonon velocity, appears close to the mean size of granules. We will discuss possible experimental arrangements where the impact of ballistic transport can be observed experimentally.

elib-URL des Eintrags:https://elib.dlr.de/220293/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Low-temperature Heat Transport under Phonon Confinement
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Semenov, AlexeyAlexei.Semenov (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Sidorova, MariiaMariia.Sidorova (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zaccone, AlessioUniversity of MilanNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:nicht veröffentlicht
Stichwörter:Nanoparticles, phonon confinement, heat transport
Veranstaltungstitel:30th International Conference on Low Temperature Physics
Veranstaltungsort:Bilbao, Spanien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:7 August 2025
Veranstaltungsende:13 August 2025
Veranstalter :TISA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Detektoren für optische Instrumente
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Optische Sensorsysteme > Terahertz- und Laserspektroskopie
Hinterlegt von: Semenov, Prof.Dr. Alexey
Hinterlegt am:04 Dez 2025 11:57
Letzte Änderung:04 Dez 2025 11:57

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.