elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Applying Uncertainty Quantification to Thermal Protection System Design for a Hypersonic Point-to-Point Passenger Vehicle

Wilken, Jascha und Koch, Aaron (2025) Applying Uncertainty Quantification to Thermal Protection System Design for a Hypersonic Point-to-Point Passenger Vehicle. In: HiSST: 4th International Conference on High-Speed Vehicle Science Technology. HiSST: 4th International Conference on High-Speed Vehicle Science Technology, 2025-09-22, Tours, Frankreich.

[img] PDF
2MB

Kurzfassung

Thermal Protection System (TPS) design is a critical challenge for hypersonic vehicles, where the system must withstand extreme reentry heating without adding excessive mass. Conventional methods often rely on conservative assumptions, which can lead to overdesigned systems. This paper takes a first exploratory step toward incorporating uncertainty quantification into TPS design, using the SpaceLiner point-to-point passenger transport concept as a reference case. A toolchain was implemented that combines trajectory optimization, aerothermal database generation, and simplified TPS sizing to explore the influence of input uncertainties. The study considers variations in lift and drag coefficients, velocity, flight path angle, altitude, and the transition Reynolds number. Using Sobol sampling, 512 trajectories were generated and analyzed to estimate impacts on TPS mass and regional distribution. As expected, the results suggest that uncertainties in the heat flux estimation and the transition to turbulent flow exert the largest influence on TPS design, while initial altitude plays only a minor role. Some outcomes are counterintuitive: For example, reduced velocity or higher drag lead to lower-altitude trajectories, increasing thermal loads and TPS mass. Clustering analysis further reveals distinct groups of trajectories and TPS results, underscoring the coupled nature of the problem. Overall, the work demonstrates how uncertainty quantification can provide additional insight into the sensitivity of TPS design. While simplified, this approach highlights key drivers and trade-offs, and points toward more balanced methods for future hypersonic vehicle studies.

elib-URL des Eintrags:https://elib.dlr.de/220030/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Applying Uncertainty Quantification to Thermal Protection System Design for a Hypersonic Point-to-Point Passenger Vehicle
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wilken, JaschaJascha.Wilken (at) dlr.dehttps://orcid.org/0000-0001-5748-1261198509746
Koch, Aaronaaron.koch (at) dlr.dehttps://orcid.org/0000-0002-1083-117X198509747
Datum:September 2025
Erschienen in:HiSST: 4th International Conference on High-Speed Vehicle Science Technology
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:thermal protection system, hypersonic transport, uncertainty quantification, trajectory optimization, SpaceLiner
Veranstaltungstitel:HiSST: 4th International Conference on High-Speed Vehicle Science Technology
Veranstaltungsort:Tours, Frankreich
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:22 September 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - TWEAK | Thermalschutz für wiederverwendbare Kryotanks
Standort: Bremen
Institute & Einrichtungen:Institut für Raumfahrtsysteme > Systemanalyse Raumtransport
Hinterlegt von: Wilken, Jascha
Hinterlegt am:02 Dez 2025 09:29
Letzte Änderung:02 Dez 2025 09:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.