Grundner, Arthur und Beucler, Tom und Savre, Julien und Lauer, Axel und Schlund, Manuel und Eyring, Veronika (2025) Reduced cloud cover errors in a hybrid AI-climate model through equation discovery and automatic tuning. Scientific Reports. Nature Publishing Group. doi: 10.1038/s41598-025-29155-3. ISSN 2045-2322.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
7MB |
Offizielle URL: https://www.nature.com/articles/s41598-025-29155-3
Kurzfassung
Cloud-related parameterizations remain a leading source of uncertainty in climate projections. Although machine learning holds promise for Earth system models (ESMs), many data-driven parameterizations lack interpretability, physical consistency, and smooth integration into ESMs. Here, a two-step method is presented to improve a climate model with data-driven parameterizations. First, we incorporate a physically consistent cloud cover parameterization—derived from storm-resolving simulations via symbolic regression, preserving interpretability while enhancing accuracy—into the ICON global atmospheric model. Second, we apply the gradient-free Nelder–Mead optimizer to automatically recalibrate the hybrid model against Earth observations, tuning in nested stages (2-, 7-, 30- and 365-day runs) to ensure stability and tractability. The tuned hybrid model substantially reduces long-standing biases in cloud cover—particularly over the Southern Ocean (by 75%) and subtropical stratocumulus regions (by 44%)—and remains robust under +4K surface warming. These results demonstrate that interpretable machine-learned parameterizations, paired with practical tuning, can efficiently and transparently strengthen ESM fidelity.
| elib-URL des Eintrags: | https://elib.dlr.de/220024/ | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
| Titel: | Reduced cloud cover errors in a hybrid AI-climate model through equation discovery and automatic tuning | ||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||
| Datum: | Dezember 2025 | ||||||||||||||||||||||||||||
| Erschienen in: | Scientific Reports | ||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||||||
| Gold Open Access: | Ja | ||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
| DOI: | 10.1038/s41598-025-29155-3 | ||||||||||||||||||||||||||||
| Verlag: | Nature Publishing Group | ||||||||||||||||||||||||||||
| ISSN: | 2045-2322 | ||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||
| Stichwörter: | machine learning, cloud cover, parameterization, ICON, climate model, symbolic regression | ||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Atmosphären- und Klimaforschung | ||||||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse | ||||||||||||||||||||||||||||
| Hinterlegt von: | Grundner, Arthur | ||||||||||||||||||||||||||||
| Hinterlegt am: | 16 Dez 2025 09:11 | ||||||||||||||||||||||||||||
| Letzte Änderung: | 16 Dez 2025 09:11 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags