Hörger, Till und Dresia, Kai und Waxenegger-Wilfing, Günther und Schlechtriem, Stefan (2025) Machine Learning Based Combustion Chamber Pressure and Mixture Ratio Controller - Simulative and Experimental Evaluation of Control Performance. In: AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025. AIAA Scitech 2025 Forum, 2025-01-06 - 2025-01-10, Orlando, FL, USA. doi: 10.2514/6.2025-2636. ISBN 978-162410723-8.
|
PDF
- Nur DLR-intern zugänglich
3MB |
Kurzfassung
A combustion chamber pressure- and mixture ratio-controller based on deep reinforcement learning methods is under development at German Aerospace Center - DLR. Training and implementation of the controller is described. The performance of this controller is evaluated in simulation and experimental tests. Application use case is a 22 N nitrous oxide/ethane thruster that can be operated in a wide range of operation points. Steady state and trajectory-following performance is measured via mean squared error, standard deviation, overshot and settling time evaluation in simulation and experiment. For steady state set-point control the controller shows good performance within the trained operation points in simulation and experiment. Root mean squared error of chamber pressure and mixture ratio is below 0.5 bar and 1 respectively for all physically achievable set-points. Control performance in simulation is better than at the real system. Trajectory-following performance in simulation is convincing, showing nearly no offset to the target values, whereas in the experimental evaluation deviations and fluctuations occur, indicating the need for further optimization when transferring the controller from simulation to the real system.
| elib-URL des Eintrags: | https://elib.dlr.de/220009/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | Machine Learning Based Combustion Chamber Pressure and Mixture Ratio Controller - Simulative and Experimental Evaluation of Control Performance | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | Januar 2025 | ||||||||||||||||||||
| Erschienen in: | AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2025 | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| DOI: | 10.2514/6.2025-2636 | ||||||||||||||||||||
| ISBN: | 978-162410723-8 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Thrust Controller, Reinforcement Learning | ||||||||||||||||||||
| Veranstaltungstitel: | AIAA Scitech 2025 Forum | ||||||||||||||||||||
| Veranstaltungsort: | Orlando, FL, USA | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 6 Januar 2025 | ||||||||||||||||||||
| Veranstaltungsende: | 10 Januar 2025 | ||||||||||||||||||||
| Veranstalter : | AIAA | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Raumtransport | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R RP - Raumtransport | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Agile Entwicklung von fortschrittlichen Raketenantrieben, R - Synergieprojekt Projekt NeoFuels | ||||||||||||||||||||
| Standort: | Lampoldshausen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Raumfahrtantriebe > Satelliten- und Orbitalantriebe Institut für Raumfahrtantriebe > Raketenantriebssysteme | ||||||||||||||||||||
| Hinterlegt von: | Hörger, Till | ||||||||||||||||||||
| Hinterlegt am: | 01 Dez 2025 10:37 | ||||||||||||||||||||
| Letzte Änderung: | 03 Dez 2025 13:13 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags