Bekar, Ali und Agarwal, Siddhant und Hüttig, Christian und Tosi, Nicola und Greenberg, David (2025) Hybrid Latent Representations for PDE Emulation. The 39th Annual Conference on Neural Information Processing Systems, 2025-12-02 - 2025-12-07, San Diego.
|
PDF
15MB |
Offizielle URL: https://openreview.net/pdf?id=Hh8ebJYQs3
Kurzfassung
For classical PDE solvers, adjusting the spatial resolution and time step offers a trade-off between speed and accuracy. Neural emulators often achieve better speed-accuracy trade-offs by operating accurately on a compact representation of the PDE system. Coarsened PDE fields are a simple and effective representation, but cannot exploit fine spatial scales in the high-fidelity numerical solutions. Alternatively, unstructured latent representations provide efficient autoregressive rollouts, but cannot enforce local interactions or physical laws as inductive biases. To overcome these limitations, we introduce hybrid representations that augment coarsened PDE fields with spatially structured latent variables extracted from high-resolution inputs. Hybrid representations provide efficient rollouts, can be trained on a simple loss defined on coarsened PDE fields, and support hard physical constraints. When predicting fine- and coarse-scale features across multiple PDE emulation tasks, they outperform or match the speed-accuracy trade-offs of the best convolutional, attentional, Fourier operator-based and autoencoding baselines.
| elib-URL des Eintrags: | https://elib.dlr.de/219973/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
| Zusätzliche Informationen: | https://openreview.net/forum?id=Hh8ebJYQs3 | ||||||||||||||||||||||||
| Titel: | Hybrid Latent Representations for PDE Emulation | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 2025 | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Machine learning, fluid dynamics, surrogate modelling | ||||||||||||||||||||||||
| Veranstaltungstitel: | The 39th Annual Conference on Neural Information Processing Systems | ||||||||||||||||||||||||
| Veranstaltungsort: | San Diego | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 2 Dezember 2025 | ||||||||||||||||||||||||
| Veranstaltungsende: | 7 Dezember 2025 | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Exploration des Sonnensystems | ||||||||||||||||||||||||
| Standort: | Berlin-Adlershof | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Planetenforschung > Planetenphysik Institut für Planetenforschung > Planetare Sensorsysteme | ||||||||||||||||||||||||
| Hinterlegt von: | Tosi, Dr. Nicola | ||||||||||||||||||||||||
| Hinterlegt am: | 02 Dez 2025 08:53 | ||||||||||||||||||||||||
| Letzte Änderung: | 02 Dez 2025 08:53 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags