Happ, Lena und Digambar Patil, Sonali und Hendricks, Stefan und Fellegara, Riccardo und Kaleschke, Lars und Gerndt, Andreas (2025) Towards Representation Learning of Radar Altimeter Waveforms for Sea Ice Surface Classification. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Seiten 333-340. ISPRS Geospatial Week 2025, 2025-04-06 - 2025-04-11, Dubai. doi: 10.5194/isprs-annals-X-G-2025-333-2025. ISSN 2194-9042.
|
PDF
3MB |
Offizielle URL: https://isprs-annals.copernicus.org/articles/X-G-2025/333/2025/isprs-annals-X-G-2025-333-2025.html
Kurzfassung
Satellite radar altimeters provide crucial insights into polar oceans and their sea ice cover, enabling the estimation of sea level, sea ice freeboard, and thickness. These retrieval algorithms depend on accurate discrimination between radar altimeter waveforms from sea ice and ocean surfaces in heterogeneous and dynamic surface conditions. A further and less mature step is classifying different sea ice types in addition to the ice/ocean discrimination. We aim to develop new methods for a novel multi-category sea ice and ocean surface classification directly from satellite radar altimeter data to improve sea ice climate data records. Traditional waveform representations are limited to a small set of parameters, leading to information loss. Moreover, machine learning models for sea ice classification often depend on supervised training, which is vulnerable to uncertainties in labeled data, especially in polar regions. To address these limitations, we explore self-supervised learning methods to optimize waveform representations, which can capture more detailed information for a classification with finer granularity. Furthermore, they do not require labeled data, which is not available at the spatial coverage and resolution of radar altimeter waveforms. We apply these techniques to SRAL data from the Sentinel-3 mission. We show that the information preserved in the latent space of an auto-encoder enhances the feature space of traditional waveform parameters, improving the subsequent classification process, when comparing our results to available sea ice charts and other remote sensing products. Our results demonstrate better generalization compared to supervised approaches.
| elib-URL des Eintrags: | https://elib.dlr.de/219899/ | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
| Titel: | Towards Representation Learning of Radar Altimeter Waveforms for Sea Ice Surface Classification | ||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||
| Datum: | 10 Juli 2025 | ||||||||||||||||||||||||||||
| Erschienen in: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
| DOI: | 10.5194/isprs-annals-X-G-2025-333-2025 | ||||||||||||||||||||||||||||
| Seitenbereich: | Seiten 333-340 | ||||||||||||||||||||||||||||
| ISSN: | 2194-9042 | ||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||
| Stichwörter: | Satellite Radar Altimeter Data, Sentinel3/SRAL, Sea Ice Classification, self-supervised learning, variational autoencoder, representation learning | ||||||||||||||||||||||||||||
| Veranstaltungstitel: | ISPRS Geospatial Week 2025 | ||||||||||||||||||||||||||||
| Veranstaltungsort: | Dubai | ||||||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
| Veranstaltungsbeginn: | 6 April 2025 | ||||||||||||||||||||||||||||
| Veranstaltungsende: | 11 April 2025 | ||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
| HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Aufgaben SISTEC | ||||||||||||||||||||||||||||
| Standort: | Braunschweig | ||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Softwaretechnologie Institut für Softwaretechnologie > Visual Computing and Engineering | ||||||||||||||||||||||||||||
| Hinterlegt von: | Fellegara, Dr Riccardo | ||||||||||||||||||||||||||||
| Hinterlegt am: | 12 Dez 2025 09:00 | ||||||||||||||||||||||||||||
| Letzte Änderung: | 12 Dez 2025 09:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags