Nouri, Bijan und Lezaca Galeano, Jorge Enrique und Fabel, Yann und Hammer, Annette und Blum, Niklas und Wilbert, Stefan (2025) Enhancing Intra-Hour Solar Irradiance Forecasting for Solar Applications: A Blended Model of Satellite, Sky Imager, and Persistence. Solar RRL. Wiley. doi: 10.1002/solr.202500486. ISSN 2367-198X.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
7MB |
Kurzfassung
The increasing integration of solar power requires highly accurate intra-hour solar irradiance forecasts. This study aims to significantly improve intra-hour solar irradiance forecasts by developing and evaluating a blending approach that integrates distinct forecast sources. Our methodology involves extending the horizon of an All-sky imager (ASI) data-driven transformer-based model up to 1 h ahead. The outputs of this ASI model are blended with a Heliosat-3-based satellite forecast and a persistence forecast via linear regression as well as with distinct advanced machine learning algorithms. We assess the hybrid system’s performance across varying sky conditions and analyze the impact of temporal aggregation schemes and the effective spatial coverage of a single ASI installation. Results demonstrate that this integrated multisource hybrid approach provides substantial benefits by reducing the overall root mean squared error and mean absolute error over the standalone satellite forecast by 13.6% and 17.0%, respectively. This is attributed to the complementary strengths of the individual models: ASI excels under dynamic conditions, satellite offers broader spatial coverage, and persistence provides a robust baseline for the immediate future. Furthermore, the strong generalization capability of the ASI model is shown through its effective performance across climatically distinct sites (training in southern Spain and validation in northern Germany).
| elib-URL des Eintrags: | https://elib.dlr.de/219406/ | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
| Titel: | Enhancing Intra-Hour Solar Irradiance Forecasting for Solar Applications: A Blended Model of Satellite, Sky Imager, and Persistence | ||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||
| Datum: | 20 November 2025 | ||||||||||||||||||||||||||||
| Erschienen in: | Solar RRL | ||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
| DOI: | 10.1002/solr.202500486 | ||||||||||||||||||||||||||||
| Verlag: | Wiley | ||||||||||||||||||||||||||||
| ISSN: | 2367-198X | ||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||
| Stichwörter: | all-sky imagers, hybrid models, irradiance, machine learning, persistence, satellite data, solar forecasting | ||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||
| HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||||||||||
| HGF - Programmthema: | Thermische Hochtemperaturtechnologien | ||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | E - Condition Monitoring | ||||||||||||||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Solarforschung > Qualifizierung Institut für Vernetzte Energiesysteme > Energiesystemanalyse, OL | ||||||||||||||||||||||||||||
| Hinterlegt von: | Nouri, Bijan | ||||||||||||||||||||||||||||
| Hinterlegt am: | 09 Dez 2025 09:32 | ||||||||||||||||||||||||||||
| Letzte Änderung: | 09 Dez 2025 09:32 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags