Terhag, Felix und Knechtges, Philipp und Basermann, Achim und Bach, Anja und Gerlach, Darius und Tank, Jens (2025) LABEL-EFFICIENT CARDIAC VOLUME ESTIMATION IN REAL-TIME MRI USING SPARSE BAYESIAN LEARNING. In: International Conference on Uncertainty Quantification in Computational Science and Engineering. 6th International Conference on Uncertainty Quantification in Computational Science and Engineering, 2025-06-15 - 2025-06-18, Rhodos, Griechenland.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Real-time magnetic resonance imaging (MRI) enables imaging under free-breathing conditions, allowing researchers to study the influence of breathing on the heartbeat. However, this advantage comes at the cost of handling large amounts of data - exceeding 4,500 images per heart - making manual segmentation of ventricular volume highly labor-intensive and costly. To improve label efficiency, it is essential to maximize the information gained from each labeled image. We propose a Bayesian model for predicting ventricular volumes with minimal manual labeling. Unlike standard approaches that treat each slice independently, our model incorporates spatial correlations by enforcing smoothness via a discretized 1D Laplace operator, avoiding strong geometric assumptions. Additionally, we exploit conjugacy to compute the posterior analytically, eliminating the need for sampling or variational inference and allowing for efficient hyperparameter optimization via type-II maximum likelihood. This enables our model to effectively utilize spatial information, improving predictions for slices with few or no labeled images. Evaluation on real patient data demonstrates that our method outperforms the baseline, particularly in data-scarce scenarios, where spatial correlation significantly enhances prediction accuracy. These results highlight the potential of our approach to improve segmentation efficiency in real-time MRI, reducing reliance on extensive manual annotations.
| elib-URL des Eintrags: | https://elib.dlr.de/219352/ | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
| Titel: | LABEL-EFFICIENT CARDIAC VOLUME ESTIMATION IN REAL-TIME MRI USING SPARSE BAYESIAN LEARNING | ||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||
| Datum: | 15 Juni 2025 | ||||||||||||||||||||||||||||
| Erschienen in: | International Conference on Uncertainty Quantification in Computational Science and Engineering | ||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||
| Stichwörter: | Bayesian Methods, Sparse Bayesian Learning, Real-time MRI, cardiac MRI, Label efficiency | ||||||||||||||||||||||||||||
| Veranstaltungstitel: | 6th International Conference on Uncertainty Quantification in Computational Science and Engineering | ||||||||||||||||||||||||||||
| Veranstaltungsort: | Rhodos, Griechenland | ||||||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
| Veranstaltungsbeginn: | 15 Juni 2025 | ||||||||||||||||||||||||||||
| Veranstaltungsende: | 18 Juni 2025 | ||||||||||||||||||||||||||||
| Veranstalter : | European Community on Computational Methods in Applied Sciences (ECCOMAS) | ||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
| HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Scientific Machine Learning for Space and Material Science Applications [SY] | ||||||||||||||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Softwaretechnologie > High-Performance Computing Institut für Luft- und Raumfahrtmedizin > Kardiovaskuläre Luft- und Raumfahrtmedizin Institut für Softwaretechnologie | ||||||||||||||||||||||||||||
| Hinterlegt von: | Terhag, Felix | ||||||||||||||||||||||||||||
| Hinterlegt am: | 26 Nov 2025 13:40 | ||||||||||||||||||||||||||||
| Letzte Änderung: | 26 Nov 2025 13:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags