elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Increased-Order Model for Unsteady Aerodynamic Nonlinearities Using Neural Networks

Feldwisch, Johan Moritz (2025) Increased-Order Model for Unsteady Aerodynamic Nonlinearities Using Neural Networks. Journal of Aircraft. American Institute of Aeronautics and Astronautics (AIAA). doi: 10.2514/1.C038330. ISSN 1533-3868.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://arc.aiaa.org/doi/10.2514/1.C038330

Kurzfassung

Discrete gust loads are computed based on linearized aerodynamics. Due to the large gust amplitudes, aerodynamic nonlinearities such as shock motion or flow separation may arise and cause significantly different loads compared to the linear prediction. Computational fluid dynamics (CFD) can be applied to account for these nonlinearities, as it has been demonstrated over the past decade for gust loads. Even though CFD is computationally expensive, the results can be used for data-driven surrogate models, which are fast to evaluate. This work suggests increasing the order of an aerodynamic state-space model by adding a nonlinear correction model to predict the nonlinear deviation from the linear solution. Here, a recurrent long short-term memory neural network can be applied. The nonlinear data stem from time-marching gust encounter simulations for the free-flying elastic aircraft at trimmed condition at transonic flow. The motion trajectories together with the gust are then forced into the linear model to calculate the nonlinear residual. The linear aerodynamic loads serve as an input to the neural network to predict the nonlinear load residual. The proposed model is demonstrated using the NASA Common Research Model configuration. The predicted aerodynamic loads are sufficiently close to the nonlinear reference simulations.

elib-URL des Eintrags:https://elib.dlr.de/219280/
Dokumentart:Zeitschriftenbeitrag
Titel:Increased-Order Model for Unsteady Aerodynamic Nonlinearities Using Neural Networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Feldwisch, Johan MoritzJohan.Feldwisch (at) dlr.dehttps://orcid.org/0000-0002-4522-3721200121258
Datum:18 November 2025
Erschienen in:Journal of Aircraft
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.2514/1.C038330
Verlag:American Institute of Aeronautics and Astronautics (AIAA)
ISSN:1533-3868
Status:veröffentlicht
Stichwörter:CFD, CSM, Aeroelasticity, Surrogate, RNN, LSTM, Neural Networks, State-space, Loewner Aerodynamics, Nonlinear flow-separation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Digitale Technologien
Standort: Göttingen
Institute & Einrichtungen:Institut für Aeroelastik > Lastanalyse und Entwurf
Hinterlegt von: Feldwisch, Johan Moritz
Hinterlegt am:18 Dez 2025 11:32
Letzte Änderung:18 Dez 2025 11:32

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.