elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

DETECTION OF FLOW SEPARATION USING ISING-BASED CLUSTERING

Komatsu, Kazuhiko und Ebrahimi Pour, Neda und Kumagai, Masahito und Dressel, Frank und Kobayashi, Hiroaki und Stahl, Kathrin und Suryadi, Alexandre und Herr, Michaela (2025) DETECTION OF FLOW SEPARATION USING ISING-BASED CLUSTERING. Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V.. DLRK, 2025-09-23 - 2025-09-25, Augsburg.

[img] PDF - Nur DLR-intern zugänglich
891kB

Kurzfassung

Turbulent flow separation over lifting surfaces is critical for many applications, such as high-lift systems, aircraft noise, wind turbines and turbomachinery flows. Awareness of the occurrence of flow separation could enable active measures to be taken to prevent phenomena associated with flow separation, such as additional noise, decreased lift and structural vibration. In this work, several machine learning methods for the detection of flow separation based on measured surface pressure fluctuations are presented and compared. The models were trained with experimental data covering symmetrical and cambered airfoils, a range of angles of attack from 0° to 23° and Reynolds numbers between Rec=0.8·10^6 and Rec=4.5·10^6. For the supervised training of the machine learning model, the data was labeled according to the status of the flow, attached or separated. This was achieved by evaluating measurement results such as the static pressure distribution along the chord, the lift coefficient and the power spectral density of the surface pressure fluctuations. Three different machine learning techniques were utilized, a multilayer perceptron, a support vector machine, and logistic regression approach. For each of them the hyperparameters were fine-tuned. The support vector machine technique performed best in terms of prediction accuracy. Overall, promising results are obtained: An accuracy of 0.99 and a Matthews correlation coefficient of 0.98 were achieved, significantly outperforming the other machine learning techniques. These results demonstrate the model’s high efficacy in the detection of flow separation. The majority of incorrectly predicted cases are configurations close to the onset of flow separation. Furthermore, the transitions from attached flow to flow separation happens gradually which implies that those cases could be characterized as a mixture of both states, which offers room for further improvement of the machine learning model. The sensitivity of results on database parameters is discussed along with the underlying flow physics and input data quality. First efforts focus on enhancing the model’s real-time capabilities by reducing computational overhead and incorporating multiclass classification to assess varying degrees of flow separation.

elib-URL des Eintrags:https://elib.dlr.de/219162/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:DETECTION OF FLOW SEPARATION USING ISING-BASED CLUSTERING
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Komatsu, Kazuhikokomatsu (at) tohoku.ac.jpNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ebrahimi Pour, NedaNeda.EbrahimiPour (at) dlr.dehttps://orcid.org/0000-0002-8167-7456NICHT SPEZIFIZIERT
Kumagai, Masahitokumam (at) tohoku.ac.jpNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dressel, FrankFrank.Dressel (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kobayashi, HiroakiTohoku UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Stahl, Kathrinkathrin.stahl (at) uni-siegen.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Suryadi, AlexandreAlexandre.Suryadi (at) dlr.dehttps://orcid.org/0000-0002-5129-5510NICHT SPEZIFIZIERT
Herr, MichaelaMichaela.Herr (at) dlr.dehttps://orcid.org/0009-0000-7275-7078NICHT SPEZIFIZIERT
Datum:24 September 2025
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Verlag:Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V.
Name der Reihe:Deutscher Luft- und Raumfahrtkongress 2025
Status:akzeptierter Beitrag
Stichwörter:Aeroacoustic; Aerodynamic; Flow separation detection; Machine learning; Data driven approach; Airfoil; Trailing edge noise
Veranstaltungstitel:DLRK
Veranstaltungsort:Augsburg
Veranstaltungsart:nationale Konferenz
Veranstaltungsbeginn:23 September 2025
Veranstaltungsende:25 September 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Digitale Technologien
Standort: Dresden
Institute & Einrichtungen:Institut für Softwaremethoden zur Produkt-Virtualisierung > Softwaremethoden
Institut für Aerodynamik und Strömungstechnik > Windenergie
Hinterlegt von: Ebrahimi Pour, Neda
Hinterlegt am:01 Dez 2025 16:52
Letzte Änderung:01 Dez 2025 16:52

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.