Orynbaikyzy, Aiym und Santoso, Imam und Rösch, Moritz und Martinis, Sandro und Ismanto, Rido Dwi und Vetrita, Yenni und Khomarudin, Rokhis M. und Strunz, Günter und Plank, Simon Manuel (2025) Land Surface Change Detection after Major Volcanic Eruptions in Indonesia using Machine Learning and Spatial-Temporal Transferability. International Journal of Applied Earth Observation and Geoinformation, 145, Seiten 1-15. Elsevier. doi: 10.1016/j.jag.2025.104965. ISSN 1569-8432.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://doi.org/10.1016/j.jag.2025.104965
Kurzfassung
Mitigating volcanic eruption disasters is a key priority in Indonesia’s national development agenda. Due to the high density of active volcanoes near populated areas, even eruptions with a relatively low Volcanic Explosivity Index (VEI) can result in significant fatalities and losses. Therefore, rapid mapping of eruption impacts is essential both during and following an eruption. Machine learning with Earth Observation (EO) data enhances the speed and accuracy of volcanic impact mapping, critical for timely disaster response. In this study, we evaluate the performance of three machine learning classifiers − Random Forest, Support Vector Machine (SVM), XGBoost – for mapping land surface changes resulting from volcanic deposits (e.g. lahars, pyroclastic density currents and lava) across three different data availability scenarios using multi-temporal Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 optical data. Scenario I use a traditional approach, where training and validation data are sourced from the same eruption event. In Scenario II, the spatial transfer scenario, we simulate the absence of local training data by using data from different volcanoes. In Scenario III, the spatial–temporal transfer scenario, we include training data from past eruptions of the target volcano in addition to other events. Our results demonstrate that Scenario I achieve the highest classification accuracy, with Random Forest and XGBoost consistently outperforming SVM, achieving f1-scores exceeding 0.90. Scenario III improves average model performance compared to Scenario II (Δf1-score – 0.12), highlighting the value of historical eruption data for enhancing classification accuracy in data-scarce environments. These findings underscore the critical role of integrating EO data and machine learning in advancing volcanic impact mapping, offering a scalable and efficient approach to support disaster management efforts globally.
| elib-URL des Eintrags: | https://elib.dlr.de/219108/ | ||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||||||||||
| Titel: | Land Surface Change Detection after Major Volcanic Eruptions in Indonesia using Machine Learning and Spatial-Temporal Transferability | ||||||||||||||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||||||||||||||
| Datum: | November 2025 | ||||||||||||||||||||||||||||||||||||||||
| Erschienen in: | International Journal of Applied Earth Observation and Geoinformation | ||||||||||||||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||||||||||||||||||
| Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||||||||||
| Band: | 145 | ||||||||||||||||||||||||||||||||||||||||
| DOI: | 10.1016/j.jag.2025.104965 | ||||||||||||||||||||||||||||||||||||||||
| Seitenbereich: | Seiten 1-15 | ||||||||||||||||||||||||||||||||||||||||
| Verlag: | Elsevier | ||||||||||||||||||||||||||||||||||||||||
| ISSN: | 1569-8432 | ||||||||||||||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||
| Stichwörter: | rapid mapping, change detection, volcano hazards, machine learning, Sentinel-1, Sentinel-2 | ||||||||||||||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||||||||||||||||||||||
| Hinterlegt von: | Orynbaikyzy, Aiym | ||||||||||||||||||||||||||||||||||||||||
| Hinterlegt am: | 19 Nov 2025 11:15 | ||||||||||||||||||||||||||||||||||||||||
| Letzte Änderung: | 02 Dez 2025 13:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags