elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching

Bonnet, Pauline und Pastori, Lorenzo und Schwabe, Mierk und Giorgetta, Marco und Iglesias-Suarez, Fernando und Eyring, Veronika (2025) Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching. Geoscientific Model Development, 18 (12), Seiten 3681-3706. Copernicus Publications. doi: 10.5194/gmd-18-3681-2025. ISSN 1991-959X.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
4MB

Offizielle URL: https://doi.org/10.5194/gmd-18-3681-2025

Kurzfassung

In climate model development, “tuning” refers to the important process of adjusting uncertain free parameters of subgrid-scale parameterizations to best match a set of Earth observations, such as the global radiation balance or global cloud cover. This is traditionally a computationally expensive step as it requires a large number of climate model simulations. This step also becomes more challenging with increasing spatial resolution and complexity of climate models. In addition, the manual tuning relies strongly on expert knowledge and is thus not independently reproducible. To reduce subjectivity and computational demands, tuning methods based on machine learning (ML) have become an active research subject. Here, we build on these developments and apply ML-based tuning to the atmospheric component of the Icosahedral Nonhydrostatic Weather and Climate Model (ICON) at 80 km resolution. Our approach follows a workflow similar to other proposed ML-based tuning methods: (1) creating a perturbed parameter ensemble (PPE) of limited size with randomly selected parameters, (2) fitting an ML-based emulator to the PPE to generate a large emulated ensemble with the emulator, and (3) shrinking the parameter space to regions compatible with observations using a method inspired by history matching. However, in contrast to previous works, we apply a sequential approach: the selected set of tuning parameters is updated in successive phases depending on the results of a sensitivity analysis with Sobol indices. We tune for global radiative properties, cloud properties, zonal wind velocities, and wind stresses on the ocean surface. With one iteration of this method, we achieve a model configuration yielding a global top-of-atmosphere net radiation budget in the range of [0, 1] W m−2, and global radiation metrics and water vapour path consistent with the reference observations. Furthermore, the resulting ML-based emulator allows us to identify the parameters that most impact the outputs that we target with tuning. The parameters that we identified to be mostly influential for the physics output metrics are the critical relative humidity in the upper troposphere and the conversion coefficient from cloud water to rain, influencing the radiation metrics and global cloud cover, together with the coefficient of sedimentation velocity of cloud ice, having a strong non-linear influence on all the physics metrics. The existence of non-linear effects further motivates the use of ML-based approaches for parameter tuning in climate models.

elib-URL des Eintrags:https://elib.dlr.de/219031/
Dokumentart:Zeitschriftenbeitrag
Titel:Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bonnet, PaulineDLR, IPANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Pastori, LorenzoDLR, IPAhttps://orcid.org/0000-0001-5882-8482197124736
Schwabe, MierkDLR, IPAhttps://orcid.org/0000-0001-6565-5890NICHT SPEZIFIZIERT
Giorgetta, Marcomarco.giorgetta (at) mpimet.mpg.dehttps://orcid.org/0000-0002-4278-1963NICHT SPEZIFIZIERT
Iglesias-Suarez, Fernandofiglesua (at) gmail.comhttps://orcid.org/0000-0003-3403-8245NICHT SPEZIFIZIERT
Eyring, VeronikaDLR, IPAhttps://orcid.org/0000-0002-6887-4885NICHT SPEZIFIZIERT
Datum:20 Juni 2025
Erschienen in:Geoscientific Model Development
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:18
DOI:10.5194/gmd-18-3681-2025
Seitenbereich:Seiten 3681-3706
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Kerkweg, Astrida.kerkweg (at) fz-juelich.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Copernicus Publications
ISSN:1991-959X
Status:veröffentlicht
Stichwörter:Parameter tuning, Automatic, Machine-Learning, Atmospheric Model, ICON-A
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Climate Informatics
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre
Hinterlegt von: Bonnet, Pauline
Hinterlegt am:17 Nov 2025 07:21
Letzte Änderung:17 Nov 2025 07:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.