Dell Amore, Luca und Carcereri, Daniel und Demir, Begüm und Rizzoli, Paola (2026) A Novel Deep-Learning-Based Approach for Estimating High-Resolution InSAR Parameters. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR. European Conference on Synthetic Aperture Radar (EUSAR), 2026-06-08 - 2026-06-11, Baden-Baden, Germany. ISSN 2197-4403. (eingereichter Beitrag)
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Nowadays, SAR Interferometry (InSAR) represents one of the most powerful tools to perform complex tasks, such as retrieving Earth’s surface topography and monitoring its deformations. However, denoising strategies are crucial for the generation of reliable and high-quality InSAR products. In this framework, we propose a complete and generalized theoretical and statistical model to physically describe and simulate a noise-free interferogram, together with its corresponding noisy version, starting from the knowledge of the InSAR acquisition geometry and of the underlying topography. A deep-learning-based model is then trained in a fully-supervised manner to estimate high-resolution InSAR parameters, i.e. coherence and interferometric phase, leveraging the proposed statistical model. In particular, an accurate assessment of the network’s estimation performance is conducted by comparing it to state-of-the-art denoising filters, such as Boxcar and Phi-Net and showing the added value of the proposed theoretical modifications to the state-of-the-art literature.
| elib-URL des Eintrags: | https://elib.dlr.de/218970/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | A Novel Deep-Learning-Based Approach for Estimating High-Resolution InSAR Parameters | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | Juni 2026 | ||||||||||||||||||||
| Erschienen in: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| ISSN: | 2197-4403 | ||||||||||||||||||||
| Status: | eingereichter Beitrag | ||||||||||||||||||||
| Stichwörter: | SAR, SAR Interferometry (InSAR), deep-learning (DL), denoising | ||||||||||||||||||||
| Veranstaltungstitel: | European Conference on Synthetic Aperture Radar (EUSAR) | ||||||||||||||||||||
| Veranstaltungsort: | Baden-Baden, Germany | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 8 Juni 2026 | ||||||||||||||||||||
| Veranstaltungsende: | 11 Juni 2026 | ||||||||||||||||||||
| Veranstalter : | VDE | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - AI4SAR | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > Satelliten-SAR-Systeme | ||||||||||||||||||||
| Hinterlegt von: | Dell Amore, Luca | ||||||||||||||||||||
| Hinterlegt am: | 13 Nov 2025 16:31 | ||||||||||||||||||||
| Letzte Änderung: | 13 Nov 2025 16:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags