elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Predictive modeling of vehicle-to-grid flexibility: A bottom-up approach demonstrated for a case-study in Germany

Hasselwander, Samuel und Senzeybek, Murat und Möring-Martínez, Gabriel (2025) Predictive modeling of vehicle-to-grid flexibility: A bottom-up approach demonstrated for a case-study in Germany. International Journal of Electrical Power & Energy Systems, 172 (111330). Elsevier. doi: 10.1016/j.ijepes.2025.111330. ISSN 0142-0615.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0142061525008786?via%3Dihub

Kurzfassung

Germany’s energy transition requires substantial energy storage capacity to manage grid stability and renewable energy integration. Conventional storage technologies may face limitations in meeting the projected demand, while the growing battery electric vehicle (BEV) fleet represents a potential distributed storage resource with uncertain vehicle-to-grid (V2G) capacity currently. In order to bridge this uncertainty, this study develops a bottom-up approach to calculate the gross battery capacity that passenger vehicle fleets could provide for grid services. The approach is demonstrated through application to the German market, identifying key factors that influence realistic V2G deployment scenarios. We enhanced our bottom-up vehicle technology scenario model by integrating different battery technologies and vehicle models offering bidirectional charging. In the reference scenario, considering annual benefits of 150 to 270 Euro for different bidirectional charging use cases and costs of 900 Euro for a dedicated wallbox, our simulations indicate up to 18.3 million bidirectional-capable BEVs by 2045, resulting in nearly 1300 GWh of gross battery capacity. Even with more conservative estimates from our sensitivity analyses, the potential battery capacity of the bidirectional BEV fleet would exceed Germany’s future energy storage capacity by a factor of four, demonstrating the considerable potential of passenger vehicles as distributed grid storage resources.

elib-URL des Eintrags:https://elib.dlr.de/218824/
Dokumentart:Zeitschriftenbeitrag
Titel:Predictive modeling of vehicle-to-grid flexibility: A bottom-up approach demonstrated for a case-study in Germany
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hasselwander, SamuelSamuel.Hasselwander (at) dlr.dehttps://orcid.org/0000-0002-0805-9061NICHT SPEZIFIZIERT
Senzeybek, MuratMurat.Senzeybek (at) dlr.dehttps://orcid.org/0000-0003-1769-3539201783523
Möring-Martínez, Gabrielgabriel.moeringmartinez (at) dlr.dehttps://orcid.org/0009-0003-4380-3081201783525
Datum:1 November 2025
Erschienen in:International Journal of Electrical Power & Energy Systems
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:172
DOI:10.1016/j.ijepes.2025.111330
Verlag:Elsevier
Name der Reihe:Special issue: ‘EV Integration and V2G Interaction’
ISSN:0142-0615
Status:veröffentlicht
Stichwörter:Battery electric vehicle;Vehicle-to-grid;Market potential
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrssystem
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VS - Verkehrssystem
DLR - Teilgebiet (Projekt, Vorhaben):V - MoDa - Models and Data for Future Mobility_Supporting Services
Standort: Stuttgart
Institute & Einrichtungen:Institut für Fahrzeugkonzepte > Fahrzeugsysteme und Technologiebewertung
Hinterlegt von: Hasselwander, Samuel
Hinterlegt am:08 Jan 2026 12:23
Letzte Änderung:08 Jan 2026 12:24

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.