Manghnani, Jatin und Ewert, Roland und Delfs, Jan Werner und Domogalla, Vincent (2025) A Data-Driven Reduced-Order Model for Installed Propeller Noise Prediction. 26th CEAS-ASC Workshop of the Aeroacoustics Specialists’, 2025-10-21 - 2025-10-22, NLR Marknesse, Netherlands.
|
PDF
- Nur DLR-intern zugänglich
3MB |
Kurzfassung
This research presents a data-driven approach to efficiently predict tonal noise generated by wing-installed propellers. We developed a workflow integrating first-principles aerodynamic simulations (UPM) with the Ffowcs Williams-Hawkings (FWH) equation-based solver (APSIM), used to generate a large-scale dataset for training a reduced-order model. Two vortex-based aerodynamic methods, the vortex filament method (VFM) and the vortex particle method (VPM), were evaluated; VPM demonstrated superior accuracy for installed configurations and was selected for data generation. Sensitivity studies identified ten key design and operating parameters influencing far-field noise. UPM-APSIM simulations were performed across a Halton-sequenced design space to create a comprehensive dataset. This data was then used to train a fully connected neural network (FCNN), serving as our reduced-order model (ROM). The trained ROM was validated against fly-over measurements from a DLR Dornier DO-228 aircraft, demonstrating good agreement in predicting tonal noise levels for the first five harmonics. This data-driven approach offers a computationally efficient means of predicting propeller noise, significantly faster than traditional methods. Future work will focus on expanding the dataset and incorporating higher-fidelity data to improve the model’s predictive capabilities across a broader range of operating conditions and frequencies.
| elib-URL des Eintrags: | https://elib.dlr.de/218816/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | A Data-Driven Reduced-Order Model for Installed Propeller Noise Prediction | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 21 Oktober 2025 | ||||||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Propeller installation noise, UPM, APSIM, FW-H, PANAM, Data-Driven Modeling, Reduced-Order Model (ROM), Semi-Empirical model, Machine Learning | ||||||||||||||||||||
| Veranstaltungstitel: | 26th CEAS-ASC Workshop of the Aeroacoustics Specialists’ | ||||||||||||||||||||
| Veranstaltungsort: | NLR Marknesse, Netherlands | ||||||||||||||||||||
| Veranstaltungsart: | Workshop | ||||||||||||||||||||
| Veranstaltungsbeginn: | 21 Oktober 2025 | ||||||||||||||||||||
| Veranstaltungsende: | 22 Oktober 2025 | ||||||||||||||||||||
| Veranstalter : | NLR, CEAS | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | L - keine Zuordnung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - keine Zuordnung | ||||||||||||||||||||
| Standort: | Aachen , Braunschweig , Göttingen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Technische Akustik Institut für Aerodynamik und Strömungstechnik > Hubschrauber, GO | ||||||||||||||||||||
| Hinterlegt von: | Manghnani, Jatin | ||||||||||||||||||||
| Hinterlegt am: | 08 Jan 2026 09:40 | ||||||||||||||||||||
| Letzte Änderung: | 08 Jan 2026 09:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags