elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Explainable Anomaly Detection for Grid Monitoring using Probabilistic Load Forecasting

Gebhard, Tobias und Tundis, Andrea und Steinke, Florian (2025) Explainable Anomaly Detection for Grid Monitoring using Probabilistic Load Forecasting. In: 2025 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). IEEE SmartGridComm - International Conference on Communications, Control, and Computing Technologies for Smart Grids, 2025-09-29, Toronto, Canada. doi: 10.1109/SmartGridComm65349.2025.11204576.

[img] PDF - Nur DLR-intern zugänglich
4MB

Kurzfassung

Anomaly detection (AD) plays a crucial role in smart grids. The integration of power-intensive, internet-connected technologies in the residential sector gives rise to new risk scenarios, which can compromise grid stability if not promptly detected. Forecasting-based AD offers a real-time capable solution for grid operators and provides interpretable results. However, commonly used deterministic threshold-based techniques struggle with heavily fluctuating data at high temporal resolution. In this paper, we propose a novel probabilistic real-time AD framework. The two-stage approach combines probabilistic very-short-term load forecasting with a quantile-based scoring function. By considering the predictive distribution of power demand based on external features, our method characterizes the inherent uncertainty in power demand patterns, allowing for clearer distinction between normal variations and critical anomalies. Our method is tested on real aggregate household data, from which we can detect abnormal demand patterns of individual households. In addition, our method is evaluated with synthetic anomalies using classification metrics and the receiver-operator characteristic (ROC), demonstrating superior performance over conventional deterministic methods. By leveraging probabilistic forecasting for AD, our method offers a straightforward, transparent, yet accurate and robust tool for smart grid nowcasting. The proposed real-time framework can provide grid operators with a warning system to anticipate and mitigate critical situations timely, thereby enhancing power system resilience.

elib-URL des Eintrags:https://elib.dlr.de/218625/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Explainable Anomaly Detection for Grid Monitoring using Probabilistic Load Forecasting
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gebhard, Tobiastobias.gebhard (at) dlr.dehttps://orcid.org/0009-0004-4351-4068196485058
Tundis, AndreaAndrea.Tundis (at) dlr.dehttps://orcid.org/0000-0002-7729-2780196485059
Steinke, FlorianTechnische Universität DarmstadtNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:September 2025
Erschienen in:2025 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1109/SmartGridComm65349.2025.11204576
Status:veröffentlicht
Stichwörter:Anomaly Detection, Probabilistic Load Forecasting, Quantile Regression, Grid Monitoring, Resilience
Veranstaltungstitel:IEEE SmartGridComm - International Conference on Communications, Control, and Computing Technologies for Smart Grids
Veranstaltungsort:Toronto, Canada
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:29 September 2025
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D CPE - Cyberphysisches Engineering
DLR - Teilgebiet (Projekt, Vorhaben):D - urbanModel
Standort: Rhein-Sieg-Kreis
Institute & Einrichtungen:Institut für den Schutz terrestrischer Infrastrukturen
Institut für den Schutz terrestrischer Infrastrukturen > Digitale Zwillinge von Infrastrukturen
Hinterlegt von: Gebhard, Tobias
Hinterlegt am:10 Nov 2025 10:48
Letzte Änderung:10 Nov 2025 10:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.