elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Knowledge Graph-Enhanced Retrieval-Augmented Generation for Earth Observation Data (Publication)

El Baff, Roxanne und Schluckebier, Ben und Hecking, Tobias (2025) Knowledge Graph-Enhanced Retrieval-Augmented Generation for Earth Observation Data (Publication). AI-driven Data Engineering and Reusability for Earth and Space Sciences (DARES 2025), 2025-10-25, Bologna, Italy.

[img] PDF
636kB

Offizielle URL: https://dares25.github.io/papers/DARES25_paper_10.pdf

Kurzfassung

Large language models have strong capabilities for different purposes, such as searching and question-answering. However, they hallucinate on domain-specific tasks, leading to potential risks such as misinformation spread or decay of trust between the technology and the user. These risks are more or less prominent depending on the context where an LLM is employed. For example, in a scientific setting, such as the Earth Observation (EO) domain, the LLM must ensure important criteria when answering, such as depth and groundedness [2]. To overcome hallucinations, recent research indicates that compound systems, which employ external tools and knowledge alongside LLMs, outperform standalone LLMs. Therefore, this paper presents a compound system to create a question-answering model for the EO domain. More precisely, our approach employs a Retrieval-Augmented Generation (RAG)-based model, focusing on three sequential components: (1) Data Curation to enable the LLM to access a semantically interconnected multi-genre corpora (e.g., scientific and datasets) when answering a question. (2) RAG-Based Model to balance between the LLM's existing knowledge and the curated data (from (1)). Lastly, (3) LLM-Based Evaluation to compare standalone LLM answers to our RAG-based model. Our evaluation across 70 EO questions shows that our approach achieves the highest score across all criteria (e.g., helpfulness), whereas traditional RAG underperforms zero-shot prompting on larger models. Our code and data are available on GitHub (https://github.com/DLR-SC/RAG-for-Earth-Observation) and Zenodo (https://doi.org/10.5281/zenodo.17106948).

elib-URL des Eintrags:https://elib.dlr.de/218571/
Dokumentart:Konferenzbeitrag (Vorlesung, Anderer)
Titel:Knowledge Graph-Enhanced Retrieval-Augmented Generation for Earth Observation Data (Publication)
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
El Baff, RoxanneRoxanne.ElBaff (at) dlr.dehttps://orcid.org/0000-0001-6661-8661NICHT SPEZIFIZIERT
Schluckebier, Benben.schluckebier (at) dlr.dehttps://orcid.org/0009-0004-4294-4971NICHT SPEZIFIZIERT
Hecking, TobiasTobias.Hecking (at) dlr.dehttps://orcid.org/0000-0003-0833-7989NICHT SPEZIFIZIERT
Datum:Oktober 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:arge Language Models (LLMs), Retrieval-Augmented Generation (RAG), Question Answering (QA), Earth Observation (EO), Knowledge Graph, Data Curation, Context Engineering, LLM-Based Evaluation, Hallucination Mitigation
Veranstaltungstitel:AI-driven Data Engineering and Reusability for Earth and Space Sciences (DARES 2025)
Veranstaltungsort:Bologna, Italy
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:25 Oktober 2025
Veranstalter :Iraklis A. Klampanos, University of Glasgow, UK
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D DAT - Daten
DLR - Teilgebiet (Projekt, Vorhaben):D - OpenSearch@DLR
Standort: Köln-Porz , Oberpfaffenhofen
Institute & Einrichtungen:Institut für Softwaretechnologie > Intelligente und verteilte Systeme
Institut für Softwaretechnologie
Hinterlegt von: El Baff, Roxanne
Hinterlegt am:25 Nov 2025 09:41
Letzte Änderung:25 Nov 2025 09:41

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.