elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Visualizing Object Detection Algorithms in Highly Automated Vehicles to Improve Remote Assistant's Understanding of the Automated Driving System

Brandt, Thorben und Brandenburg, Stefan und Wilbrink, Marc und Oehl, Michael (2025) Visualizing Object Detection Algorithms in Highly Automated Vehicles to Improve Remote Assistant's Understanding of the Automated Driving System. Tagung experimentell arbeitender Psychologen (TeaP) - 2025, 2025-03-11 - 2025-03-12, Frankfurt.

[img] PDF
65kB

Kurzfassung

The legal implementation of highly automated vehicles (HAV, SAE L4) in Germany into traffic depends on the availability of a technical supervisor who can be operationalized as a remote assistant. A HAV utilizes artificial intelligence (AI) that help execute the driving task. Though, this AI is highly capable to execute the driving task, but faces still technical limitations that can cause minimal risk maneuvers (MRM) in which the vehicle would stop. A remote assistant can provide support during an MRM and expand the HAV's capabilities. The effectiveness and feasibility of this depends on the remote assistant's understanding of the system. To improve the assistant's understanding a transparent human-machine interface (HMI) can be used. However, how system transparency can be achieved in an HMI for remote assistance is still unclear. Providing information about the vehicles object detection, for example by boxing detected objects, may improve understanding of the remote assistants. In an experimental online study, we investigated the influence of system transparency using different variants to highlight detected objects on the understanding of remote assistants towards the HAV's AI during an MRM. Participants experienced different MRMs in which they received information about the AI-based object detection via an HMI that augmented the vehicle's video streams (boxing vs. saliency mapping vs. combined). Results provide insights into transparent HMI design for remote assistance, to improve the understanding towards the HAV's AI. This supports the development of remote operation HMIs for an efficient and safe implementation of remote assistance into highly automated driving systems.

elib-URL des Eintrags:https://elib.dlr.de/218531/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Visualizing Object Detection Algorithms in Highly Automated Vehicles to Improve Remote Assistant's Understanding of the Automated Driving System
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Brandt, Thorbenthorben.brandt (at) dlr.dehttps://orcid.org/0009-0009-6346-7947NICHT SPEZIFIZIERT
Brandenburg, Stefanstefan.brandenburg (at) psychologie.tu-chemnitz.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wilbrink, Marcmarc.wilbrink (at) dlr.dehttps://orcid.org/0000-0002-7550-8613NICHT SPEZIFIZIERT
Oehl, MichaelMichael.Oehl (at) dlr.dehttps://orcid.org/0000-0002-0871-2286NICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Highly Automated Vehicles, Understanding, Remote Assistance, Human-AI Collaboration
Veranstaltungstitel:Tagung experimentell arbeitender Psychologen (TeaP) - 2025
Veranstaltungsort:Frankfurt
Veranstaltungsart:nationale Konferenz
Veranstaltungsbeginn:11 März 2025
Veranstaltungsende:12 März 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - ACT4Transformation - Automated and Connected Technologies for Mobility Transformation
Standort: Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Kooperative Straßenfahrzeuge und Systeme
Hinterlegt von: Brandt, Thorben
Hinterlegt am:05 Dez 2025 09:57
Letzte Änderung:05 Dez 2025 09:57

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.