elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Visualizing Detection Algorithms of Highly Automated Vehicles: Creating Transparency to Support Remote Assistant's Understanding and Predictability?

Brandt, Thorben und Brandenburg, Stefan und Wilbrink, Marc und Oehl, Michael (2025) Visualizing Detection Algorithms of Highly Automated Vehicles: Creating Transparency to Support Remote Assistant's Understanding and Predictability? In: Proceedings of the 9th Humanist Conference, Chemnitz, Germany, 27-29 August 2025. 9th Humanist Conference, 2025-08-27 - 2025-08-29, Chemnitz. (im Druck)

[img] PDF
804kB

Kurzfassung

The scalable implementation of highly automated driving systems (ADS, SAE L4) on German roads depends on the availability of a remote assistant. Although ADS are highly sophisticated, they still need support to overcome technical limitations. Reaching these limitations will lead to minimal risk manoeuvres (MRM), causing the vehicle to safely stop in traffic. Remote assistants (RA) provide high level support for these situations. However, the effectiveness of a RA's intervention depends on the RA's understanding of the system state. The understanding of these RAs can be improved with transparent system design that provides information about the ADS. However, the most efficient design to communicate the information is yet to be determined. This study investigates the effect on a RA's understanding by providing information about an ADS's visual detection. Different types of visualizations were used to highlight detected objects in the ADS's video stream to the RA. In an experimental online study, the influence of the visualizations on the understanding, predictability, and complacency of RAs was investigated. Participants experienced different situations where they saw one of three types of different visualizations in the vehicle's video streams (boxing vs. saliency mapping vs. combined). Results indicated no influence on understanding and predictability. However, results on complacency provide insights into future research possibilities. This may shed light on adequate design solutions to improve trust and complacency towards the ADS.

elib-URL des Eintrags:https://elib.dlr.de/218523/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Visualizing Detection Algorithms of Highly Automated Vehicles: Creating Transparency to Support Remote Assistant's Understanding and Predictability?
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Brandt, Thorbenthorben.brandt (at) dlr.dehttps://orcid.org/0009-0009-6346-7947NICHT SPEZIFIZIERT
Brandenburg, Stefanstefan.brandenburg (at) psychologie.tu-chemnitz.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wilbrink, Marcmarc.wilbrink (at) dlr.dehttps://orcid.org/0000-0002-7550-8613NICHT SPEZIFIZIERT
Oehl, MichaelMichael.Oehl (at) dlr.dehttps://orcid.org/0000-0002-0871-2286NICHT SPEZIFIZIERT
Datum:2025
Erschienen in:Proceedings of the 9th Humanist Conference, Chemnitz, Germany, 27-29 August 2025
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:im Druck
Stichwörter:Automated Driving Systems, Remote Assistance, Human-Computer Interaction, Object Detection Algorithm, Transparency, Complacency
Veranstaltungstitel:9th Humanist Conference
Veranstaltungsort:Chemnitz
Veranstaltungsart:nationale Konferenz
Veranstaltungsbeginn:27 August 2025
Veranstaltungsende:29 August 2025
Veranstalter :Technische Universität Chemnitz
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - ACT4Transformation - Automated and Connected Technologies for Mobility Transformation
Standort: Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Kooperative Straßenfahrzeuge und Systeme
Hinterlegt von: Brandt, Thorben
Hinterlegt am:05 Dez 2025 09:45
Letzte Änderung:05 Dez 2025 09:45

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.