Amrullah, Chaikal und Panangian, Daniel und Bittner, Ksenia (2025) PolyRoof: Precision Roof Polygonization in Urban Residential Building with Graph Neural Networks. In: Joint Urban Remote Sensing Event (JURSE), Seiten 1-4. IEEE Geoscience and Remote Sensing Society. Joint Urban Remote Sensing Event (JURSE) 2025, 2025-05-04 - 2025-05-07, City of Tunis, Tunisia. doi: 10.1109/JURSE60372.2025.11075990.
|
PDF
6MB |
Offizielle URL: https://ieeexplore.ieee.org/document/11075990
Kurzfassung
The growing demand for detailed building roof data has driven the development of automated extraction methods to overcome the inefficiencies of traditional approaches, particularly in handling complex variations in building geometries. Re:PolyWorld, which integrates point detection with graph neural networks, presents a promising solution for reconstructing high-detail building roof vector data. This study enhances Re:PolyWorld’s performance on complex urban residential structures by incorporating attention-based backbones and additional area segmentation loss. Despite dataset limitations, our experiments demonstrated improvements in point position accuracy (1.33 pixels) and line distance accuracy (14.39 pixels), along with a notable increase in the reconstruction score to 91.99%. These findings highlight the potential of advanced neural network architectures in addressing the challenges of complex urban residential geometries.
| elib-URL des Eintrags: | https://elib.dlr.de/218506/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | PolyRoof: Precision Roof Polygonization in Urban Residential Building with Graph Neural Networks | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2025 | ||||||||||||||||
| Erschienen in: | Joint Urban Remote Sensing Event (JURSE) | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1109/JURSE60372.2025.11075990 | ||||||||||||||||
| Seitenbereich: | Seiten 1-4 | ||||||||||||||||
| Herausgeber: |
| ||||||||||||||||
| Verlag: | IEEE Geoscience and Remote Sensing Society | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Urban Residential, Building Geometry Complexity, Polygonal Roof Extraction, Graph Neural Networks, Aerial Imagery, AI4BuildingModeling | ||||||||||||||||
| Veranstaltungstitel: | Joint Urban Remote Sensing Event (JURSE) 2025 | ||||||||||||||||
| Veranstaltungsort: | City of Tunis, Tunisia | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 4 Mai 2025 | ||||||||||||||||
| Veranstaltungsende: | 7 Mai 2025 | ||||||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
| DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||
| DLR - Forschungsgebiet: | D DAT - Daten | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | D - Digitaler Atlas 2.0, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC, R - Optische Fernerkundung | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
| Hinterlegt von: | Bittner, Ksenia | ||||||||||||||||
| Hinterlegt am: | 10 Nov 2025 09:47 | ||||||||||||||||
| Letzte Änderung: | 19 Nov 2025 12:11 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags