Panangian, Daniel und Bittner, Ksenia (2025) Can Location Embeddings Enhance Super-Resolution of Satellite Imagery? In: IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025, Seiten 6136-6145. IEEE. 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2025-02-28 - 2025-03-04, Tucson, Arizona. doi: 10.1109/WACV61041.2025.00598. ISBN 979-833151083-1.
|
PDF
26MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10943387
Kurzfassung
Publicly available satellite imagery, such as Sentinel-2, often lacks the spatial resolution required for accurate analysis of remote sensing tasks including urban planning and disaster response. Current super-resolution techniques are typically trained on limited datasets, leading to poor generalization across diverse geographic regions. In this work, we propose a novel super-resolution framework that enhances generalization by incorporating geographic context through location embeddings. Our framework employs Generative Adversarial Networks (GANs) and incorporates techniques from diffusion models to enhance image quality. Furthermore, we address tiling artifacts by integrating information from neighboring images, enabling the generation of seamless, high-resolution outputs. We demonstrate the effectiveness of our method on the building segmentation task, showing significant improvements over state-of-the-art methods and highlighting its potential for real-world applications.
| elib-URL des Eintrags: | https://elib.dlr.de/218505/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||
| Titel: | Can Location Embeddings Enhance Super-Resolution of Satellite Imagery? | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | 2025 | ||||||||||||
| Erschienen in: | IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025 | ||||||||||||
| Referierte Publikation: | Ja | ||||||||||||
| Open Access: | Ja | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Ja | ||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||
| DOI: | 10.1109/WACV61041.2025.00598 | ||||||||||||
| Seitenbereich: | Seiten 6136-6145 | ||||||||||||
| Verlag: | IEEE | ||||||||||||
| Name der Reihe: | Paper | ||||||||||||
| ISBN: | 979-833151083-1 | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Satellite Data, Image Enhancement, Imgae Processing, Deep Learning, Location Embeddings, AI4BuildingModeling | ||||||||||||
| Veranstaltungstitel: | 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) | ||||||||||||
| Veranstaltungsort: | Tucson, Arizona | ||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||
| Veranstaltungsbeginn: | 28 Februar 2025 | ||||||||||||
| Veranstaltungsende: | 4 März 2025 | ||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||
| DLR - Schwerpunkt: | Digitalisierung | ||||||||||||
| DLR - Forschungsgebiet: | D DAT - Daten | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | D - Digitaler Atlas 2.0, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC, R - Optische Fernerkundung | ||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
| Hinterlegt von: | Bittner, Ksenia | ||||||||||||
| Hinterlegt am: | 10 Nov 2025 09:44 | ||||||||||||
| Letzte Änderung: | 10 Nov 2025 10:23 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags