Panangian, Daniel und Bittner, Ksenia (2025) Dfilled: Repurposing Edge-Enhancing Diffusion for Guided DSM Void Filling. In: 2025 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, WACVW 2025, Seiten 526-534. IEEE. IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW) 2025, 2025-02-28 - 2025-03-04, Tucson, Arizona. doi: 10.1109/WACVW65960.2025.00064. ISBN 979-833153662-6. ISSN 2572-4398.
|
PDF
4MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10972569
Kurzfassung
Digital Surface Models (DSMs) are essential for accurately representing Earth's topography in geospatial analyses. DSMs capture detailed elevations of natural and man-made features, crucial for applications like urban planning, vegetation studies, and 3D reconstruction. However, DSMs derived from stereo satellite imagery often contain voids or missing data due to occlusions, shadows, and low-signal areas. Previous studies have primarily focused on void filling for digital elevation models (DEMs) and Digital Terrain Models (DTMs), employing methods such as inverse distance weighting (IDW), kriging, and spline interpolation. While effective for simpler terrains, these approaches often fail to handle the intricate structures present in DSMs. To overcome these limitations, we introduce Dfilled, a guided DSM void filling method that leverages optical remote sensing images through edge-enhancing diffusion. Dfilled repurposes deep anisotropic diffusion models, which originally designed for super-resolution tasks, to inpaint DSMs. Additionally, we utilize Perlin noise to create inpainting masks that mimic natural void patterns in DSMs. Experimental evaluations demonstrate that Dfilled surpasses traditional interpolation methods and deep learning approaches in DSM void filling tasks. Both quantitative and qualitative assessments highlight the method's ability to manage complex features and deliver accurate, visually coherent results.
| elib-URL des Eintrags: | https://elib.dlr.de/218499/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||
| Titel: | Dfilled: Repurposing Edge-Enhancing Diffusion for Guided DSM Void Filling | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | 2025 | ||||||||||||
| Erschienen in: | 2025 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, WACVW 2025 | ||||||||||||
| Referierte Publikation: | Ja | ||||||||||||
| Open Access: | Ja | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Ja | ||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||
| DOI: | 10.1109/WACVW65960.2025.00064 | ||||||||||||
| Seitenbereich: | Seiten 526-534 | ||||||||||||
| Herausgeber: |
| ||||||||||||
| Verlag: | IEEE | ||||||||||||
| Name der Reihe: | Paper | ||||||||||||
| ISSN: | 2572-4398 | ||||||||||||
| ISBN: | 979-833153662-6 | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Digital Surface Models, Voids Filling, Satellite Data, Inpainting, Deep Learning, AI4BuildingModeling | ||||||||||||
| Veranstaltungstitel: | IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW) 2025 | ||||||||||||
| Veranstaltungsort: | Tucson, Arizona | ||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||
| Veranstaltungsbeginn: | 28 Februar 2025 | ||||||||||||
| Veranstaltungsende: | 4 März 2025 | ||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||
| DLR - Schwerpunkt: | Digitalisierung | ||||||||||||
| DLR - Forschungsgebiet: | D DAT - Daten | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | D - Digitaler Atlas 2.0, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC, R - Optische Fernerkundung | ||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
| Hinterlegt von: | Bittner, Ksenia | ||||||||||||
| Hinterlegt am: | 10 Nov 2025 09:13 | ||||||||||||
| Letzte Änderung: | 17 Nov 2025 17:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags