Saves, Paul und Hallé-Hannan, Edward und Bussemaker, Jasper und Diouane, Youssef und Bartoli, Nathalie (2025) Hierarchical Modeling and Architecture Optimization: Review and Unified Framework. Structural and Multidisciplinary Optimization. Springer. ISSN 1615-147X. (eingereichter Beitrag)
|
PDF
- Nur DLR-intern zugänglich
- Preprintversion (eingereichte Entwurfsversion)
1MB |
Kurzfassung
Simulation-based problems involving mixed-variable inputs frequently feature domains that are hierarchical, conditional, heterogeneous, or tree-structured. These characteristics pose challenges for data representation, modeling, and optimization. This paper reviews extensive literature on these structured input spaces and proposes a unified framework that generalizes existing approaches. In this framework, input variables may be continuous, integer, or categorical. A variable is described as meta if its value governs the presence of other decreed variables, enabling the modeling of conditional and hierarchical structures. We further introduce the concept of partially-decreed variables, whose activation depends on contextual conditions. To capture these inter-variable hierarchical relationships, we introduce design space graphs, combining principles from feature modeling and graph theory. This allows the definition of general hierarchical domains suitable for describing complex system architectures. The framework supports the use of surrogate models over such domains and integrates hierarchical kernels and distances for efficient modeling and optimization. The proposed methods are implemented in the open-source Surrogate Modeling Toolbox (SMT 2.0), and their capabilities are demonstrated through applications in Bayesian optimization for complex system design, including a case study in green aircraft architecture.
| elib-URL des Eintrags: | https://elib.dlr.de/218314/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | Hierarchical Modeling and Architecture Optimization: Review and Unified Framework | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 27 Juni 2025 | ||||||||||||||||||||||||
| Erschienen in: | Structural and Multidisciplinary Optimization | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| Verlag: | Springer | ||||||||||||||||||||||||
| ISSN: | 1615-147X | ||||||||||||||||||||||||
| Status: | eingereichter Beitrag | ||||||||||||||||||||||||
| Stichwörter: | numerical modeling feature model hierarchical domain meta variables mixed variables design space graph Gaussian process | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||||||||||||||||||
| Standort: | Hamburg | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Systemarchitekturen in der Luftfahrt > Digitale Methoden der Systementwicklung | ||||||||||||||||||||||||
| Hinterlegt von: | Bussemaker, Jasper | ||||||||||||||||||||||||
| Hinterlegt am: | 06 Nov 2025 11:29 | ||||||||||||||||||||||||
| Letzte Änderung: | 10 Nov 2025 09:13 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags